Obstruction theory for coincidences of multiple maps

Detalhes bibliográficos
Autor(a) principal: Monis, Thaís F.M. [UNESP]
Data de Publicação: 2017
Outros Autores: Wong, Peter
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.topol.2017.07.017
http://hdl.handle.net/11449/169999
Resumo: Let f1,…,fk:X→N be maps from a complex X to a compact manifold N, k≥2. In previous works [1,12], a Lefschetz type theorem was established so that the non-vanishing of a Lefschetz type coincidence class L(f1,…,fk) implies the existence of a coincidence x∈X such that f1(x)=…=fk(x). In this paper, we investigate the converse of the Lefschetz coincidence theorem for multiple maps. In particular, we study the obstruction to deforming the maps f1,…,fk to be coincidence free. We construct an example of two maps f1,f2:M→T from a sympletic 4-manifold M to the 2-torus T such that f1 and f2 cannot be homotopic to coincidence free maps but for any f:M→T, the maps f1,f2,f are deformable to be coincidence free.
id UNSP_52fbc5ea50bf134f948d91d4a9f8cf36
oai_identifier_str oai:repositorio.unesp.br:11449/169999
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Obstruction theory for coincidences of multiple mapsLefschetz coincidence theoryLocal coefficientsObstruction theoryLet f1,…,fk:X→N be maps from a complex X to a compact manifold N, k≥2. In previous works [1,12], a Lefschetz type theorem was established so that the non-vanishing of a Lefschetz type coincidence class L(f1,…,fk) implies the existence of a coincidence x∈X such that f1(x)=…=fk(x). In this paper, we investigate the converse of the Lefschetz coincidence theorem for multiple maps. In particular, we study the obstruction to deforming the maps f1,…,fk to be coincidence free. We construct an example of two maps f1,f2:M→T from a sympletic 4-manifold M to the 2-torus T such that f1 and f2 cannot be homotopic to coincidence free maps but for any f:M→T, the maps f1,f2,f are deformable to be coincidence free.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)São Paulo State University (UNESP) Institute of Geosciences and Exact Sciences (IGCE) Rio Claro, Av. 24ADepartment of Mathematics Bates CollegeSão Paulo State University (UNESP) Institute of Geosciences and Exact Sciences (IGCE) Rio Claro, Av. 24AFAPESP: 2014/17609-0Universidade Estadual Paulista (Unesp)Bates CollegeMonis, Thaís F.M. [UNESP]Wong, Peter2018-12-11T16:48:39Z2018-12-11T16:48:39Z2017-09-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article213-225application/pdfhttp://dx.doi.org/10.1016/j.topol.2017.07.017Topology and its Applications, v. 229, p. 213-225.0166-8641http://hdl.handle.net/11449/16999910.1016/j.topol.2017.07.0172-s2.0-850268365532-s2.0-85026836553.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTopology and its Applications0,609info:eu-repo/semantics/openAccess2023-12-10T06:21:25Zoai:repositorio.unesp.br:11449/169999Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:58:03.463948Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Obstruction theory for coincidences of multiple maps
title Obstruction theory for coincidences of multiple maps
spellingShingle Obstruction theory for coincidences of multiple maps
Monis, Thaís F.M. [UNESP]
Lefschetz coincidence theory
Local coefficients
Obstruction theory
title_short Obstruction theory for coincidences of multiple maps
title_full Obstruction theory for coincidences of multiple maps
title_fullStr Obstruction theory for coincidences of multiple maps
title_full_unstemmed Obstruction theory for coincidences of multiple maps
title_sort Obstruction theory for coincidences of multiple maps
author Monis, Thaís F.M. [UNESP]
author_facet Monis, Thaís F.M. [UNESP]
Wong, Peter
author_role author
author2 Wong, Peter
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Bates College
dc.contributor.author.fl_str_mv Monis, Thaís F.M. [UNESP]
Wong, Peter
dc.subject.por.fl_str_mv Lefschetz coincidence theory
Local coefficients
Obstruction theory
topic Lefschetz coincidence theory
Local coefficients
Obstruction theory
description Let f1,…,fk:X→N be maps from a complex X to a compact manifold N, k≥2. In previous works [1,12], a Lefschetz type theorem was established so that the non-vanishing of a Lefschetz type coincidence class L(f1,…,fk) implies the existence of a coincidence x∈X such that f1(x)=…=fk(x). In this paper, we investigate the converse of the Lefschetz coincidence theorem for multiple maps. In particular, we study the obstruction to deforming the maps f1,…,fk to be coincidence free. We construct an example of two maps f1,f2:M→T from a sympletic 4-manifold M to the 2-torus T such that f1 and f2 cannot be homotopic to coincidence free maps but for any f:M→T, the maps f1,f2,f are deformable to be coincidence free.
publishDate 2017
dc.date.none.fl_str_mv 2017-09-15
2018-12-11T16:48:39Z
2018-12-11T16:48:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.topol.2017.07.017
Topology and its Applications, v. 229, p. 213-225.
0166-8641
http://hdl.handle.net/11449/169999
10.1016/j.topol.2017.07.017
2-s2.0-85026836553
2-s2.0-85026836553.pdf
url http://dx.doi.org/10.1016/j.topol.2017.07.017
http://hdl.handle.net/11449/169999
identifier_str_mv Topology and its Applications, v. 229, p. 213-225.
0166-8641
10.1016/j.topol.2017.07.017
2-s2.0-85026836553
2-s2.0-85026836553.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Topology and its Applications
0,609
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 213-225
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129143679746048