Obstruction theory for coincidences of multiple maps
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.topol.2017.07.017 http://hdl.handle.net/11449/169999 |
Resumo: | Let f1,…,fk:X→N be maps from a complex X to a compact manifold N, k≥2. In previous works [1,12], a Lefschetz type theorem was established so that the non-vanishing of a Lefschetz type coincidence class L(f1,…,fk) implies the existence of a coincidence x∈X such that f1(x)=…=fk(x). In this paper, we investigate the converse of the Lefschetz coincidence theorem for multiple maps. In particular, we study the obstruction to deforming the maps f1,…,fk to be coincidence free. We construct an example of two maps f1,f2:M→T from a sympletic 4-manifold M to the 2-torus T such that f1 and f2 cannot be homotopic to coincidence free maps but for any f:M→T, the maps f1,f2,f are deformable to be coincidence free. |
id |
UNSP_52fbc5ea50bf134f948d91d4a9f8cf36 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/169999 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Obstruction theory for coincidences of multiple mapsLefschetz coincidence theoryLocal coefficientsObstruction theoryLet f1,…,fk:X→N be maps from a complex X to a compact manifold N, k≥2. In previous works [1,12], a Lefschetz type theorem was established so that the non-vanishing of a Lefschetz type coincidence class L(f1,…,fk) implies the existence of a coincidence x∈X such that f1(x)=…=fk(x). In this paper, we investigate the converse of the Lefschetz coincidence theorem for multiple maps. In particular, we study the obstruction to deforming the maps f1,…,fk to be coincidence free. We construct an example of two maps f1,f2:M→T from a sympletic 4-manifold M to the 2-torus T such that f1 and f2 cannot be homotopic to coincidence free maps but for any f:M→T, the maps f1,f2,f are deformable to be coincidence free.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)São Paulo State University (UNESP) Institute of Geosciences and Exact Sciences (IGCE) Rio Claro, Av. 24ADepartment of Mathematics Bates CollegeSão Paulo State University (UNESP) Institute of Geosciences and Exact Sciences (IGCE) Rio Claro, Av. 24AFAPESP: 2014/17609-0Universidade Estadual Paulista (Unesp)Bates CollegeMonis, Thaís F.M. [UNESP]Wong, Peter2018-12-11T16:48:39Z2018-12-11T16:48:39Z2017-09-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article213-225application/pdfhttp://dx.doi.org/10.1016/j.topol.2017.07.017Topology and its Applications, v. 229, p. 213-225.0166-8641http://hdl.handle.net/11449/16999910.1016/j.topol.2017.07.0172-s2.0-850268365532-s2.0-85026836553.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTopology and its Applications0,609info:eu-repo/semantics/openAccess2023-12-10T06:21:25Zoai:repositorio.unesp.br:11449/169999Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:58:03.463948Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Obstruction theory for coincidences of multiple maps |
title |
Obstruction theory for coincidences of multiple maps |
spellingShingle |
Obstruction theory for coincidences of multiple maps Monis, Thaís F.M. [UNESP] Lefschetz coincidence theory Local coefficients Obstruction theory |
title_short |
Obstruction theory for coincidences of multiple maps |
title_full |
Obstruction theory for coincidences of multiple maps |
title_fullStr |
Obstruction theory for coincidences of multiple maps |
title_full_unstemmed |
Obstruction theory for coincidences of multiple maps |
title_sort |
Obstruction theory for coincidences of multiple maps |
author |
Monis, Thaís F.M. [UNESP] |
author_facet |
Monis, Thaís F.M. [UNESP] Wong, Peter |
author_role |
author |
author2 |
Wong, Peter |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Bates College |
dc.contributor.author.fl_str_mv |
Monis, Thaís F.M. [UNESP] Wong, Peter |
dc.subject.por.fl_str_mv |
Lefschetz coincidence theory Local coefficients Obstruction theory |
topic |
Lefschetz coincidence theory Local coefficients Obstruction theory |
description |
Let f1,…,fk:X→N be maps from a complex X to a compact manifold N, k≥2. In previous works [1,12], a Lefschetz type theorem was established so that the non-vanishing of a Lefschetz type coincidence class L(f1,…,fk) implies the existence of a coincidence x∈X such that f1(x)=…=fk(x). In this paper, we investigate the converse of the Lefschetz coincidence theorem for multiple maps. In particular, we study the obstruction to deforming the maps f1,…,fk to be coincidence free. We construct an example of two maps f1,f2:M→T from a sympletic 4-manifold M to the 2-torus T such that f1 and f2 cannot be homotopic to coincidence free maps but for any f:M→T, the maps f1,f2,f are deformable to be coincidence free. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09-15 2018-12-11T16:48:39Z 2018-12-11T16:48:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.topol.2017.07.017 Topology and its Applications, v. 229, p. 213-225. 0166-8641 http://hdl.handle.net/11449/169999 10.1016/j.topol.2017.07.017 2-s2.0-85026836553 2-s2.0-85026836553.pdf |
url |
http://dx.doi.org/10.1016/j.topol.2017.07.017 http://hdl.handle.net/11449/169999 |
identifier_str_mv |
Topology and its Applications, v. 229, p. 213-225. 0166-8641 10.1016/j.topol.2017.07.017 2-s2.0-85026836553 2-s2.0-85026836553.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Topology and its Applications 0,609 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
213-225 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129143679746048 |