Computation of nielsen and reidemeister coincidence numbers for multiple maps

Detalhes bibliográficos
Autor(a) principal: Monis, Thaís Fernanda Mendes [UNESP]
Data de Publicação: 2020
Outros Autores: Wong, Peter
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.12775/TMNA.2020.002
http://hdl.handle.net/11449/208453
Resumo: Let f1, …, fk: M → N be maps between closed manifolds, N(f1, …, fk ) and R(f1, …, fk ) be the Nielsen and the Reideimeister coincidence numbers, respectively. In this note, we relate R(f1, …, fk ) with R(f1, f2 ), …, R(f1, fk ). When N is a torus or a nilmanifold, we compute R(f1, …, fk ) which, in these cases, is equal to N(f1, …, fk ).
id UNSP_dd0b7136ccdf9a5f9b932d37dfadd981
oai_identifier_str oai:repositorio.unesp.br:11449/208453
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Computation of nielsen and reidemeister coincidence numbers for multiple mapsNielsen coincidence numberNilmanifoldsTopological coincidence theoryLet f1, …, fk: M → N be maps between closed manifolds, N(f1, …, fk ) and R(f1, …, fk ) be the Nielsen and the Reideimeister coincidence numbers, respectively. In this note, we relate R(f1, …, fk ) with R(f1, f2 ), …, R(f1, fk ). When N is a torus or a nilmanifold, we compute R(f1, …, fk ) which, in these cases, is equal to N(f1, …, fk ).Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Estadual Paulista (UNESP) Instituto de Geociências e Ciências Exatas (IGCE), Av. 24A, 1515Department of Mathematics Bates CollegeUniversidade Estadual Paulista (UNESP) Instituto de Geociências e Ciências Exatas (IGCE), Av. 24A, 1515FAPESP: 2018/03550-5Universidade Estadual Paulista (Unesp)Monis, Thaís Fernanda Mendes [UNESP]Wong, Peter2021-06-25T11:12:23Z2021-06-25T11:12:23Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article483-499http://dx.doi.org/10.12775/TMNA.2020.002Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 483-499, 2020.1230-3429http://hdl.handle.net/11449/20845310.12775/TMNA.2020.0022-s2.0-85101597593Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTopological Methods in Nonlinear Analysisinfo:eu-repo/semantics/openAccess2021-10-23T19:02:10Zoai:repositorio.unesp.br:11449/208453Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:34:44.288615Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Computation of nielsen and reidemeister coincidence numbers for multiple maps
title Computation of nielsen and reidemeister coincidence numbers for multiple maps
spellingShingle Computation of nielsen and reidemeister coincidence numbers for multiple maps
Monis, Thaís Fernanda Mendes [UNESP]
Nielsen coincidence number
Nilmanifolds
Topological coincidence theory
title_short Computation of nielsen and reidemeister coincidence numbers for multiple maps
title_full Computation of nielsen and reidemeister coincidence numbers for multiple maps
title_fullStr Computation of nielsen and reidemeister coincidence numbers for multiple maps
title_full_unstemmed Computation of nielsen and reidemeister coincidence numbers for multiple maps
title_sort Computation of nielsen and reidemeister coincidence numbers for multiple maps
author Monis, Thaís Fernanda Mendes [UNESP]
author_facet Monis, Thaís Fernanda Mendes [UNESP]
Wong, Peter
author_role author
author2 Wong, Peter
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Monis, Thaís Fernanda Mendes [UNESP]
Wong, Peter
dc.subject.por.fl_str_mv Nielsen coincidence number
Nilmanifolds
Topological coincidence theory
topic Nielsen coincidence number
Nilmanifolds
Topological coincidence theory
description Let f1, …, fk: M → N be maps between closed manifolds, N(f1, …, fk ) and R(f1, …, fk ) be the Nielsen and the Reideimeister coincidence numbers, respectively. In this note, we relate R(f1, …, fk ) with R(f1, f2 ), …, R(f1, fk ). When N is a torus or a nilmanifold, we compute R(f1, …, fk ) which, in these cases, is equal to N(f1, …, fk ).
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
2021-06-25T11:12:23Z
2021-06-25T11:12:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.12775/TMNA.2020.002
Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 483-499, 2020.
1230-3429
http://hdl.handle.net/11449/208453
10.12775/TMNA.2020.002
2-s2.0-85101597593
url http://dx.doi.org/10.12775/TMNA.2020.002
http://hdl.handle.net/11449/208453
identifier_str_mv Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 483-499, 2020.
1230-3429
10.12775/TMNA.2020.002
2-s2.0-85101597593
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Topological Methods in Nonlinear Analysis
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 483-499
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128674127413248