Computation of nielsen and reidemeister coincidence numbers for multiple maps
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.12775/TMNA.2020.002 http://hdl.handle.net/11449/208453 |
Resumo: | Let f1, …, fk: M → N be maps between closed manifolds, N(f1, …, fk ) and R(f1, …, fk ) be the Nielsen and the Reideimeister coincidence numbers, respectively. In this note, we relate R(f1, …, fk ) with R(f1, f2 ), …, R(f1, fk ). When N is a torus or a nilmanifold, we compute R(f1, …, fk ) which, in these cases, is equal to N(f1, …, fk ). |
id |
UNSP_dd0b7136ccdf9a5f9b932d37dfadd981 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/208453 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Computation of nielsen and reidemeister coincidence numbers for multiple mapsNielsen coincidence numberNilmanifoldsTopological coincidence theoryLet f1, …, fk: M → N be maps between closed manifolds, N(f1, …, fk ) and R(f1, …, fk ) be the Nielsen and the Reideimeister coincidence numbers, respectively. In this note, we relate R(f1, …, fk ) with R(f1, f2 ), …, R(f1, fk ). When N is a torus or a nilmanifold, we compute R(f1, …, fk ) which, in these cases, is equal to N(f1, …, fk ).Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Estadual Paulista (UNESP) Instituto de Geociências e Ciências Exatas (IGCE), Av. 24A, 1515Department of Mathematics Bates CollegeUniversidade Estadual Paulista (UNESP) Instituto de Geociências e Ciências Exatas (IGCE), Av. 24A, 1515FAPESP: 2018/03550-5Universidade Estadual Paulista (Unesp)Monis, Thaís Fernanda Mendes [UNESP]Wong, Peter2021-06-25T11:12:23Z2021-06-25T11:12:23Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article483-499http://dx.doi.org/10.12775/TMNA.2020.002Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 483-499, 2020.1230-3429http://hdl.handle.net/11449/20845310.12775/TMNA.2020.0022-s2.0-85101597593Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTopological Methods in Nonlinear Analysisinfo:eu-repo/semantics/openAccess2021-10-23T19:02:10Zoai:repositorio.unesp.br:11449/208453Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:34:44.288615Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Computation of nielsen and reidemeister coincidence numbers for multiple maps |
title |
Computation of nielsen and reidemeister coincidence numbers for multiple maps |
spellingShingle |
Computation of nielsen and reidemeister coincidence numbers for multiple maps Monis, Thaís Fernanda Mendes [UNESP] Nielsen coincidence number Nilmanifolds Topological coincidence theory |
title_short |
Computation of nielsen and reidemeister coincidence numbers for multiple maps |
title_full |
Computation of nielsen and reidemeister coincidence numbers for multiple maps |
title_fullStr |
Computation of nielsen and reidemeister coincidence numbers for multiple maps |
title_full_unstemmed |
Computation of nielsen and reidemeister coincidence numbers for multiple maps |
title_sort |
Computation of nielsen and reidemeister coincidence numbers for multiple maps |
author |
Monis, Thaís Fernanda Mendes [UNESP] |
author_facet |
Monis, Thaís Fernanda Mendes [UNESP] Wong, Peter |
author_role |
author |
author2 |
Wong, Peter |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Monis, Thaís Fernanda Mendes [UNESP] Wong, Peter |
dc.subject.por.fl_str_mv |
Nielsen coincidence number Nilmanifolds Topological coincidence theory |
topic |
Nielsen coincidence number Nilmanifolds Topological coincidence theory |
description |
Let f1, …, fk: M → N be maps between closed manifolds, N(f1, …, fk ) and R(f1, …, fk ) be the Nielsen and the Reideimeister coincidence numbers, respectively. In this note, we relate R(f1, …, fk ) with R(f1, f2 ), …, R(f1, fk ). When N is a torus or a nilmanifold, we compute R(f1, …, fk ) which, in these cases, is equal to N(f1, …, fk ). |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 2021-06-25T11:12:23Z 2021-06-25T11:12:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.12775/TMNA.2020.002 Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 483-499, 2020. 1230-3429 http://hdl.handle.net/11449/208453 10.12775/TMNA.2020.002 2-s2.0-85101597593 |
url |
http://dx.doi.org/10.12775/TMNA.2020.002 http://hdl.handle.net/11449/208453 |
identifier_str_mv |
Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 483-499, 2020. 1230-3429 10.12775/TMNA.2020.002 2-s2.0-85101597593 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Topological Methods in Nonlinear Analysis |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
483-499 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128674127413248 |