Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments

Detalhes bibliográficos
Autor(a) principal: Nunokawa, H. [UNESP]
Data de Publicação: 2002
Outros Autores: Teves, W. J.C., Funchal, R. Zukanovich
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1103/PhysRevD.66.093010
http://hdl.handle.net/11449/224826
Resumo: Assuming that neutrinos are Majorana particles, in a three-generation framework, current and future neutrino oscillation experiments can determine six out of the nine parameters which fully describe the structure of the neutrino mass matrix. We try to clarify the interplay among the remaining parameters, the absolute neutrino mass scale and two CP violating Majorana phases, and how they can be accessed by future neutrinoless double beta (0 v ββ) decay experiments, for the normal as well as for the inverted order of the neutrino mass spectrum. Assuming the oscillation parameters to be in the range presently allowed by atmospheric, solar, reactor, and accelerator neutrino experiments, we quantitatively estimate the bounds on m0, the lightest neutrino mass, that can be inferred if the next generation 0 v ββ decay experiments can probe the effective Majorana mass (mee) down to ∼ 1 meV. In this context we conclude that in the case that neutrinos are Majorana particles, (a) if m0≳300 meV, i.e., within the range directly attainable by future laboratory experiments as well as astrophysical observations, then mee≳30 meV must be observed, (b) if w 0<300 meV, results from future 0 v ββ decay experiments combined with stringent bounds on the neutrino oscillation parameters, especially the solar ones, will place much stronger limits on the allowed values of m0 than these direct experiments. For instance, if a positive signal is observed around mee= 10 meV, we estimate 3≲m 0/meV≲65 at 95% C.L.; on the other hand, if no signal is observed down to mee= 10 meV, then m0≲55 meV at 95% C.L. © 2002 The American Physical Society.
id UNSP_53aa7b8627f8c8ace14376c77d871fe9
oai_identifier_str oai:repositorio.unesp.br:11449/224826
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experimentsAssuming that neutrinos are Majorana particles, in a three-generation framework, current and future neutrino oscillation experiments can determine six out of the nine parameters which fully describe the structure of the neutrino mass matrix. We try to clarify the interplay among the remaining parameters, the absolute neutrino mass scale and two CP violating Majorana phases, and how they can be accessed by future neutrinoless double beta (0 v ββ) decay experiments, for the normal as well as for the inverted order of the neutrino mass spectrum. Assuming the oscillation parameters to be in the range presently allowed by atmospheric, solar, reactor, and accelerator neutrino experiments, we quantitatively estimate the bounds on m0, the lightest neutrino mass, that can be inferred if the next generation 0 v ββ decay experiments can probe the effective Majorana mass (mee) down to ∼ 1 meV. In this context we conclude that in the case that neutrinos are Majorana particles, (a) if m0≳300 meV, i.e., within the range directly attainable by future laboratory experiments as well as astrophysical observations, then mee≳30 meV must be observed, (b) if w 0<300 meV, results from future 0 v ββ decay experiments combined with stringent bounds on the neutrino oscillation parameters, especially the solar ones, will place much stronger limits on the allowed values of m0 than these direct experiments. For instance, if a positive signal is observed around mee= 10 meV, we estimate 3≲m 0/meV≲65 at 95% C.L.; on the other hand, if no signal is observed down to mee= 10 meV, then m0≲55 meV at 95% C.L. © 2002 The American Physical Society.Instituto de Física Teórica Universidade Estadual Paulista, Rita Pamplona 145, 01405-900 São PauloInstituto de Física Universidade de São Paulo, C. P. 66.318, 05315-970 São PauloInstituto de Física Teórica Universidade Estadual Paulista, Rita Pamplona 145, 01405-900 São PauloUniversidade Estadual Paulista (UNESP)Universidade de São Paulo (USP)Nunokawa, H. [UNESP]Teves, W. J.C.Funchal, R. Zukanovich2022-04-28T20:11:54Z2022-04-28T20:11:54Z2002-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevD.66.093010Physical Review D, v. 66, n. 9, 2002.0556-2821http://hdl.handle.net/11449/22482610.1103/PhysRevD.66.0930102-s2.0-33750382943Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Dinfo:eu-repo/semantics/openAccess2022-04-28T20:11:54Zoai:repositorio.unesp.br:11449/224826Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:04:57.559233Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments
title Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments
spellingShingle Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments
Nunokawa, H. [UNESP]
title_short Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments
title_full Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments
title_fullStr Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments
title_full_unstemmed Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments
title_sort Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments
author Nunokawa, H. [UNESP]
author_facet Nunokawa, H. [UNESP]
Teves, W. J.C.
Funchal, R. Zukanovich
author_role author
author2 Teves, W. J.C.
Funchal, R. Zukanovich
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Nunokawa, H. [UNESP]
Teves, W. J.C.
Funchal, R. Zukanovich
description Assuming that neutrinos are Majorana particles, in a three-generation framework, current and future neutrino oscillation experiments can determine six out of the nine parameters which fully describe the structure of the neutrino mass matrix. We try to clarify the interplay among the remaining parameters, the absolute neutrino mass scale and two CP violating Majorana phases, and how they can be accessed by future neutrinoless double beta (0 v ββ) decay experiments, for the normal as well as for the inverted order of the neutrino mass spectrum. Assuming the oscillation parameters to be in the range presently allowed by atmospheric, solar, reactor, and accelerator neutrino experiments, we quantitatively estimate the bounds on m0, the lightest neutrino mass, that can be inferred if the next generation 0 v ββ decay experiments can probe the effective Majorana mass (mee) down to ∼ 1 meV. In this context we conclude that in the case that neutrinos are Majorana particles, (a) if m0≳300 meV, i.e., within the range directly attainable by future laboratory experiments as well as astrophysical observations, then mee≳30 meV must be observed, (b) if w 0<300 meV, results from future 0 v ββ decay experiments combined with stringent bounds on the neutrino oscillation parameters, especially the solar ones, will place much stronger limits on the allowed values of m0 than these direct experiments. For instance, if a positive signal is observed around mee= 10 meV, we estimate 3≲m 0/meV≲65 at 95% C.L.; on the other hand, if no signal is observed down to mee= 10 meV, then m0≲55 meV at 95% C.L. © 2002 The American Physical Society.
publishDate 2002
dc.date.none.fl_str_mv 2002-01-01
2022-04-28T20:11:54Z
2022-04-28T20:11:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1103/PhysRevD.66.093010
Physical Review D, v. 66, n. 9, 2002.
0556-2821
http://hdl.handle.net/11449/224826
10.1103/PhysRevD.66.093010
2-s2.0-33750382943
url http://dx.doi.org/10.1103/PhysRevD.66.093010
http://hdl.handle.net/11449/224826
identifier_str_mv Physical Review D, v. 66, n. 9, 2002.
0556-2821
10.1103/PhysRevD.66.093010
2-s2.0-33750382943
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review D
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128605980459008