Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1103/PhysRevD.66.093010 http://hdl.handle.net/11449/224826 |
Resumo: | Assuming that neutrinos are Majorana particles, in a three-generation framework, current and future neutrino oscillation experiments can determine six out of the nine parameters which fully describe the structure of the neutrino mass matrix. We try to clarify the interplay among the remaining parameters, the absolute neutrino mass scale and two CP violating Majorana phases, and how they can be accessed by future neutrinoless double beta (0 v ββ) decay experiments, for the normal as well as for the inverted order of the neutrino mass spectrum. Assuming the oscillation parameters to be in the range presently allowed by atmospheric, solar, reactor, and accelerator neutrino experiments, we quantitatively estimate the bounds on m0, the lightest neutrino mass, that can be inferred if the next generation 0 v ββ decay experiments can probe the effective Majorana mass (mee) down to ∼ 1 meV. In this context we conclude that in the case that neutrinos are Majorana particles, (a) if m0≳300 meV, i.e., within the range directly attainable by future laboratory experiments as well as astrophysical observations, then mee≳30 meV must be observed, (b) if w 0<300 meV, results from future 0 v ββ decay experiments combined with stringent bounds on the neutrino oscillation parameters, especially the solar ones, will place much stronger limits on the allowed values of m0 than these direct experiments. For instance, if a positive signal is observed around mee= 10 meV, we estimate 3≲m 0/meV≲65 at 95% C.L.; on the other hand, if no signal is observed down to mee= 10 meV, then m0≲55 meV at 95% C.L. © 2002 The American Physical Society. |
id |
UNSP_53aa7b8627f8c8ace14376c77d871fe9 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/224826 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experimentsAssuming that neutrinos are Majorana particles, in a three-generation framework, current and future neutrino oscillation experiments can determine six out of the nine parameters which fully describe the structure of the neutrino mass matrix. We try to clarify the interplay among the remaining parameters, the absolute neutrino mass scale and two CP violating Majorana phases, and how they can be accessed by future neutrinoless double beta (0 v ββ) decay experiments, for the normal as well as for the inverted order of the neutrino mass spectrum. Assuming the oscillation parameters to be in the range presently allowed by atmospheric, solar, reactor, and accelerator neutrino experiments, we quantitatively estimate the bounds on m0, the lightest neutrino mass, that can be inferred if the next generation 0 v ββ decay experiments can probe the effective Majorana mass (mee) down to ∼ 1 meV. In this context we conclude that in the case that neutrinos are Majorana particles, (a) if m0≳300 meV, i.e., within the range directly attainable by future laboratory experiments as well as astrophysical observations, then mee≳30 meV must be observed, (b) if w 0<300 meV, results from future 0 v ββ decay experiments combined with stringent bounds on the neutrino oscillation parameters, especially the solar ones, will place much stronger limits on the allowed values of m0 than these direct experiments. For instance, if a positive signal is observed around mee= 10 meV, we estimate 3≲m 0/meV≲65 at 95% C.L.; on the other hand, if no signal is observed down to mee= 10 meV, then m0≲55 meV at 95% C.L. © 2002 The American Physical Society.Instituto de Física Teórica Universidade Estadual Paulista, Rita Pamplona 145, 01405-900 São PauloInstituto de Física Universidade de São Paulo, C. P. 66.318, 05315-970 São PauloInstituto de Física Teórica Universidade Estadual Paulista, Rita Pamplona 145, 01405-900 São PauloUniversidade Estadual Paulista (UNESP)Universidade de São Paulo (USP)Nunokawa, H. [UNESP]Teves, W. J.C.Funchal, R. Zukanovich2022-04-28T20:11:54Z2022-04-28T20:11:54Z2002-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1103/PhysRevD.66.093010Physical Review D, v. 66, n. 9, 2002.0556-2821http://hdl.handle.net/11449/22482610.1103/PhysRevD.66.0930102-s2.0-33750382943Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysical Review Dinfo:eu-repo/semantics/openAccess2022-04-28T20:11:54Zoai:repositorio.unesp.br:11449/224826Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:04:57.559233Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments |
title |
Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments |
spellingShingle |
Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments Nunokawa, H. [UNESP] |
title_short |
Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments |
title_full |
Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments |
title_fullStr |
Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments |
title_full_unstemmed |
Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments |
title_sort |
Constraining the absolute neutrino mass scale and Majorana CP violating phases by future 0 v ββ decay experiments |
author |
Nunokawa, H. [UNESP] |
author_facet |
Nunokawa, H. [UNESP] Teves, W. J.C. Funchal, R. Zukanovich |
author_role |
author |
author2 |
Teves, W. J.C. Funchal, R. Zukanovich |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Nunokawa, H. [UNESP] Teves, W. J.C. Funchal, R. Zukanovich |
description |
Assuming that neutrinos are Majorana particles, in a three-generation framework, current and future neutrino oscillation experiments can determine six out of the nine parameters which fully describe the structure of the neutrino mass matrix. We try to clarify the interplay among the remaining parameters, the absolute neutrino mass scale and two CP violating Majorana phases, and how they can be accessed by future neutrinoless double beta (0 v ββ) decay experiments, for the normal as well as for the inverted order of the neutrino mass spectrum. Assuming the oscillation parameters to be in the range presently allowed by atmospheric, solar, reactor, and accelerator neutrino experiments, we quantitatively estimate the bounds on m0, the lightest neutrino mass, that can be inferred if the next generation 0 v ββ decay experiments can probe the effective Majorana mass (mee) down to ∼ 1 meV. In this context we conclude that in the case that neutrinos are Majorana particles, (a) if m0≳300 meV, i.e., within the range directly attainable by future laboratory experiments as well as astrophysical observations, then mee≳30 meV must be observed, (b) if w 0<300 meV, results from future 0 v ββ decay experiments combined with stringent bounds on the neutrino oscillation parameters, especially the solar ones, will place much stronger limits on the allowed values of m0 than these direct experiments. For instance, if a positive signal is observed around mee= 10 meV, we estimate 3≲m 0/meV≲65 at 95% C.L.; on the other hand, if no signal is observed down to mee= 10 meV, then m0≲55 meV at 95% C.L. © 2002 The American Physical Society. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-01-01 2022-04-28T20:11:54Z 2022-04-28T20:11:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1103/PhysRevD.66.093010 Physical Review D, v. 66, n. 9, 2002. 0556-2821 http://hdl.handle.net/11449/224826 10.1103/PhysRevD.66.093010 2-s2.0-33750382943 |
url |
http://dx.doi.org/10.1103/PhysRevD.66.093010 http://hdl.handle.net/11449/224826 |
identifier_str_mv |
Physical Review D, v. 66, n. 9, 2002. 0556-2821 10.1103/PhysRevD.66.093010 2-s2.0-33750382943 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physical Review D |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128605980459008 |