A new parallel training algorithm for optimum-path forest-based learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-319-52277-7_24 http://hdl.handle.net/11449/178659 |
Resumo: | In this work, we present a new parallel-driven approach to speed up Optimum-Path Forest (OPF) training phase. In addition, we show how to make OPF up to five times faster for training using a simple parallel-friendly data structure, which can achieve the same accuracy results to the ones obtained by traditional OPF. To the best of our knowledge, we have not observed any work that attempted at parallelizing OPF to date, which turns out to be the main contribution of this paper. The experiments are carried out in four public datasets, showing the proposed approach maintains the trade-off between efficiency and effectiveness. |
id |
UNSP_53d5b4f260bc1a261ba1a7599b16a476 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/178659 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A new parallel training algorithm for optimum-path forest-based learningGraph algorithmsOptimum-path forestParallel algorithmsIn this work, we present a new parallel-driven approach to speed up Optimum-Path Forest (OPF) training phase. In addition, we show how to make OPF up to five times faster for training using a simple parallel-friendly data structure, which can achieve the same accuracy results to the ones obtained by traditional OPF. To the best of our knowledge, we have not observed any work that attempted at parallelizing OPF to date, which turns out to be the main contribution of this paper. The experiments are carried out in four public datasets, showing the proposed approach maintains the trade-off between efficiency and effectiveness.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Escuela de Ciencia de la Computacion Universidad Catolica San PabloComputer Science Department Sao Paulo State University - UNESPComputer Science Department Sao Paulo State University - UNESPFAPESP: #2014/16250-9CNPq: #306166/2014-3CNPq: #470571/2013-6Universidad Catolica San PabloUniversidade Estadual Paulista (Unesp)Culquicondor, AldoCastelo-Fernández, CésarPapa, João Paulo [UNESP]2018-12-11T17:31:31Z2018-12-11T17:31:31Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject192-199http://dx.doi.org/10.1007/978-3-319-52277-7_24Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10125 LNCS, p. 192-199.1611-33490302-9743http://hdl.handle.net/11449/17865910.1007/978-3-319-52277-7_242-s2.0-85013418925Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/178659Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:35:22.875279Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A new parallel training algorithm for optimum-path forest-based learning |
title |
A new parallel training algorithm for optimum-path forest-based learning |
spellingShingle |
A new parallel training algorithm for optimum-path forest-based learning Culquicondor, Aldo Graph algorithms Optimum-path forest Parallel algorithms |
title_short |
A new parallel training algorithm for optimum-path forest-based learning |
title_full |
A new parallel training algorithm for optimum-path forest-based learning |
title_fullStr |
A new parallel training algorithm for optimum-path forest-based learning |
title_full_unstemmed |
A new parallel training algorithm for optimum-path forest-based learning |
title_sort |
A new parallel training algorithm for optimum-path forest-based learning |
author |
Culquicondor, Aldo |
author_facet |
Culquicondor, Aldo Castelo-Fernández, César Papa, João Paulo [UNESP] |
author_role |
author |
author2 |
Castelo-Fernández, César Papa, João Paulo [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidad Catolica San Pablo Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Culquicondor, Aldo Castelo-Fernández, César Papa, João Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Graph algorithms Optimum-path forest Parallel algorithms |
topic |
Graph algorithms Optimum-path forest Parallel algorithms |
description |
In this work, we present a new parallel-driven approach to speed up Optimum-Path Forest (OPF) training phase. In addition, we show how to make OPF up to five times faster for training using a simple parallel-friendly data structure, which can achieve the same accuracy results to the ones obtained by traditional OPF. To the best of our knowledge, we have not observed any work that attempted at parallelizing OPF to date, which turns out to be the main contribution of this paper. The experiments are carried out in four public datasets, showing the proposed approach maintains the trade-off between efficiency and effectiveness. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 2018-12-11T17:31:31Z 2018-12-11T17:31:31Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-319-52277-7_24 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10125 LNCS, p. 192-199. 1611-3349 0302-9743 http://hdl.handle.net/11449/178659 10.1007/978-3-319-52277-7_24 2-s2.0-85013418925 |
url |
http://dx.doi.org/10.1007/978-3-319-52277-7_24 http://hdl.handle.net/11449/178659 |
identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10125 LNCS, p. 192-199. 1611-3349 0302-9743 10.1007/978-3-319-52277-7_24 2-s2.0-85013418925 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 0,295 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
192-199 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128537453920256 |