An efficient parallel implementation for training supervised optimum-path forest classifiers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.neucom.2018.10.115 http://hdl.handle.net/11449/201723 |
Resumo: | In this work, we propose and analyze parallel training algorithms for the Optimum-Path Forest (OPF) classifier. We start with a naïve parallelization approach where, following traditional sequential training that considers the supervised OPF, a priority queue is used to store the best samples at each learning iteration. The proposed approach replaces the priority queue with an array and a linear search aiming at using a parallel-friendly data structure. We show that this approach leads to less competition among threads, thus yielding a more temporal and spatial locality. Additionally, we show how the use of vectorization in distance calculations affects the overall speedup and also provide directions on the situations one can benefit from that. The experiments are carried out on five public datasets with a different number of samples and features on architectures with distinct levels of parallelism. On average, the proposed approach provides speedups of up to 11.8 × and 26 × in a 24-core Intel and 64-core AMD processors, respectively. |
id |
UNSP_00fc88c1f4084f71affb401bfcd00d16 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/201723 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
An efficient parallel implementation for training supervised optimum-path forest classifiersGraph algorithmsOptimum-path forestParallel algorithmsIn this work, we propose and analyze parallel training algorithms for the Optimum-Path Forest (OPF) classifier. We start with a naïve parallelization approach where, following traditional sequential training that considers the supervised OPF, a priority queue is used to store the best samples at each learning iteration. The proposed approach replaces the priority queue with an array and a linear search aiming at using a parallel-friendly data structure. We show that this approach leads to less competition among threads, thus yielding a more temporal and spatial locality. Additionally, we show how the use of vectorization in distance calculations affects the overall speedup and also provide directions on the situations one can benefit from that. The experiments are carried out on five public datasets with a different number of samples and features on architectures with distinct levels of parallelism. On average, the proposed approach provides speedups of up to 11.8 × and 26 × in a 24-core Intel and 64-core AMD processors, respectively.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidad Católica San PabloUNESP – São Paulo State UniversityInstitute of Computing University of CampinasUNESP – São Paulo State UniversityFAPESP: #2013/07375-0FAPESP: #2014/12236-1FAPESP: #2014/16250-9FAPESP: #2016/15337-9FAPESP: #2016/19403-6FAPESP: #2017/03940-5CNPq: #306166/2014-3CNPq: #307066/2017-7CAPES: 2966/2014Universidad Católica San PabloUniversidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Culquicondor, AldoBaldassin, Alexandro [UNESP]Castelo-Fernández, Cesarde Carvalho, João P.L.Papa, João Paulo [UNESP]2020-12-12T02:40:07Z2020-12-12T02:40:07Z2020-06-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article259-268http://dx.doi.org/10.1016/j.neucom.2018.10.115Neurocomputing, v. 393, p. 259-268.1872-82860925-2312http://hdl.handle.net/11449/20172310.1016/j.neucom.2018.10.1152-s2.0-85084114844Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNeurocomputinginfo:eu-repo/semantics/openAccess2024-04-23T16:10:46Zoai:repositorio.unesp.br:11449/201723Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:59:03.084395Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
An efficient parallel implementation for training supervised optimum-path forest classifiers |
title |
An efficient parallel implementation for training supervised optimum-path forest classifiers |
spellingShingle |
An efficient parallel implementation for training supervised optimum-path forest classifiers Culquicondor, Aldo Graph algorithms Optimum-path forest Parallel algorithms |
title_short |
An efficient parallel implementation for training supervised optimum-path forest classifiers |
title_full |
An efficient parallel implementation for training supervised optimum-path forest classifiers |
title_fullStr |
An efficient parallel implementation for training supervised optimum-path forest classifiers |
title_full_unstemmed |
An efficient parallel implementation for training supervised optimum-path forest classifiers |
title_sort |
An efficient parallel implementation for training supervised optimum-path forest classifiers |
author |
Culquicondor, Aldo |
author_facet |
Culquicondor, Aldo Baldassin, Alexandro [UNESP] Castelo-Fernández, Cesar de Carvalho, João P.L. Papa, João Paulo [UNESP] |
author_role |
author |
author2 |
Baldassin, Alexandro [UNESP] Castelo-Fernández, Cesar de Carvalho, João P.L. Papa, João Paulo [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidad Católica San Pablo Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Culquicondor, Aldo Baldassin, Alexandro [UNESP] Castelo-Fernández, Cesar de Carvalho, João P.L. Papa, João Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Graph algorithms Optimum-path forest Parallel algorithms |
topic |
Graph algorithms Optimum-path forest Parallel algorithms |
description |
In this work, we propose and analyze parallel training algorithms for the Optimum-Path Forest (OPF) classifier. We start with a naïve parallelization approach where, following traditional sequential training that considers the supervised OPF, a priority queue is used to store the best samples at each learning iteration. The proposed approach replaces the priority queue with an array and a linear search aiming at using a parallel-friendly data structure. We show that this approach leads to less competition among threads, thus yielding a more temporal and spatial locality. Additionally, we show how the use of vectorization in distance calculations affects the overall speedup and also provide directions on the situations one can benefit from that. The experiments are carried out on five public datasets with a different number of samples and features on architectures with distinct levels of parallelism. On average, the proposed approach provides speedups of up to 11.8 × and 26 × in a 24-core Intel and 64-core AMD processors, respectively. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T02:40:07Z 2020-12-12T02:40:07Z 2020-06-14 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.neucom.2018.10.115 Neurocomputing, v. 393, p. 259-268. 1872-8286 0925-2312 http://hdl.handle.net/11449/201723 10.1016/j.neucom.2018.10.115 2-s2.0-85084114844 |
url |
http://dx.doi.org/10.1016/j.neucom.2018.10.115 http://hdl.handle.net/11449/201723 |
identifier_str_mv |
Neurocomputing, v. 393, p. 259-268. 1872-8286 0925-2312 10.1016/j.neucom.2018.10.115 2-s2.0-85084114844 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Neurocomputing |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
259-268 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128729550946304 |