Periodic Orbits in the Muthuswamy-Chua Simplest Chaotic Circuit

Detalhes bibliográficos
Autor(a) principal: Messias, Marcelo [UNESP]
Data de Publicação: 2022
Outros Autores: Reinol, Alisson C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s10883-022-09610-4
http://hdl.handle.net/11449/242154
Resumo: In 2010, Muthuswamy and Chua presented an autonomous chaotic circuit using only three elements in series: an inductor, a capacitor and a memristor. This circuit is known as the simplest chaotic circuit and it is determined by a three-dimensional differential system, which depends on the real parameters C, L, α and β. Although the Muthuswamy-Chua system is simpler in formulation than other chaotic systems, its dynamics has proven to be complicated. Here we analytically prove the existence of periodic orbits in this system for suitable choice of the parameter values α and β leading to interesting phenomena as multistability and formation of chaotic attractors. In order to do that, we consider the existence of first integrals, invariant algebraic surfaces and a result from averaging theory. In addition, we relate the obtained results to the memristance and to the physical characteristics of the memristor.
id UNSP_54a48dd67c956580671c297f5e3e2aa9
oai_identifier_str oai:repositorio.unesp.br:11449/242154
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Periodic Orbits in the Muthuswamy-Chua Simplest Chaotic CircuitChaotic attractorFirst integralMemristor-based circuitMultistabilityPeriodic orbitIn 2010, Muthuswamy and Chua presented an autonomous chaotic circuit using only three elements in series: an inductor, a capacitor and a memristor. This circuit is known as the simplest chaotic circuit and it is determined by a three-dimensional differential system, which depends on the real parameters C, L, α and β. Although the Muthuswamy-Chua system is simpler in formulation than other chaotic systems, its dynamics has proven to be complicated. Here we analytically prove the existence of periodic orbits in this system for suitable choice of the parameter values α and β leading to interesting phenomena as multistability and formation of chaotic attractors. In order to do that, we consider the existence of first integrals, invariant algebraic surfaces and a result from averaging theory. In addition, we relate the obtained results to the memristance and to the physical characteristics of the memristor.Department of Mathematics and Computer Science São Paulo State University (UNESP), SPDepartment of Mathematics Federal University of Technology - Paraná (UTFPR), PRDepartment of Mathematics and Computer Science São Paulo State University (UNESP), SPUniversidade Estadual Paulista (UNESP)Federal University of Technology - Paraná (UTFPR)Messias, Marcelo [UNESP]Reinol, Alisson C.2023-03-02T10:25:26Z2023-03-02T10:25:26Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s10883-022-09610-4Journal of Dynamical and Control Systems.1573-86981079-2724http://hdl.handle.net/11449/24215410.1007/s10883-022-09610-42-s2.0-85136022355Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Dynamical and Control Systemsinfo:eu-repo/semantics/openAccess2024-06-19T14:31:49Zoai:repositorio.unesp.br:11449/242154Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:40:05.750396Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Periodic Orbits in the Muthuswamy-Chua Simplest Chaotic Circuit
title Periodic Orbits in the Muthuswamy-Chua Simplest Chaotic Circuit
spellingShingle Periodic Orbits in the Muthuswamy-Chua Simplest Chaotic Circuit
Messias, Marcelo [UNESP]
Chaotic attractor
First integral
Memristor-based circuit
Multistability
Periodic orbit
title_short Periodic Orbits in the Muthuswamy-Chua Simplest Chaotic Circuit
title_full Periodic Orbits in the Muthuswamy-Chua Simplest Chaotic Circuit
title_fullStr Periodic Orbits in the Muthuswamy-Chua Simplest Chaotic Circuit
title_full_unstemmed Periodic Orbits in the Muthuswamy-Chua Simplest Chaotic Circuit
title_sort Periodic Orbits in the Muthuswamy-Chua Simplest Chaotic Circuit
author Messias, Marcelo [UNESP]
author_facet Messias, Marcelo [UNESP]
Reinol, Alisson C.
author_role author
author2 Reinol, Alisson C.
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Federal University of Technology - Paraná (UTFPR)
dc.contributor.author.fl_str_mv Messias, Marcelo [UNESP]
Reinol, Alisson C.
dc.subject.por.fl_str_mv Chaotic attractor
First integral
Memristor-based circuit
Multistability
Periodic orbit
topic Chaotic attractor
First integral
Memristor-based circuit
Multistability
Periodic orbit
description In 2010, Muthuswamy and Chua presented an autonomous chaotic circuit using only three elements in series: an inductor, a capacitor and a memristor. This circuit is known as the simplest chaotic circuit and it is determined by a three-dimensional differential system, which depends on the real parameters C, L, α and β. Although the Muthuswamy-Chua system is simpler in formulation than other chaotic systems, its dynamics has proven to be complicated. Here we analytically prove the existence of periodic orbits in this system for suitable choice of the parameter values α and β leading to interesting phenomena as multistability and formation of chaotic attractors. In order to do that, we consider the existence of first integrals, invariant algebraic surfaces and a result from averaging theory. In addition, we relate the obtained results to the memristance and to the physical characteristics of the memristor.
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
2023-03-02T10:25:26Z
2023-03-02T10:25:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s10883-022-09610-4
Journal of Dynamical and Control Systems.
1573-8698
1079-2724
http://hdl.handle.net/11449/242154
10.1007/s10883-022-09610-4
2-s2.0-85136022355
url http://dx.doi.org/10.1007/s10883-022-09610-4
http://hdl.handle.net/11449/242154
identifier_str_mv Journal of Dynamical and Control Systems.
1573-8698
1079-2724
10.1007/s10883-022-09610-4
2-s2.0-85136022355
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Dynamical and Control Systems
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128262842351616