Analytical solutions to the Stefan problem with internal heat generation

Detalhes bibliográficos
Autor(a) principal: McCord, David
Data de Publicação: 2016
Outros Autores: Crepeau, John, Siahpush, Ali, Ferres Brogin, Joao Angelo [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.applthermaleng.2016.03.122
http://hdl.handle.net/11449/161711
Resumo: A first-order, ordinary differential equation modeling the Stefan problem (solid-liquid phase change) with internal heat generation in a plane wall is derived and the solutions are compared to the results of a computational fluid dynamics analysis. The internal heat generation term makes the governing equations non-homogeneous so the principle of superposition is used to separate the transient from steady-state portions of the heat equation, which are then solved separately. There is excellent agreement between the solutions to the differential equation and the CFD results for the movement of both the solidification and melting fronts. The solid and liquid temperature profiles show a distinct difference in slope along the interface early in the phase change process. As time increases, the changes in slope decrease and the temperature profiles become parabolic. The system reaches steady-state faster for larger Stefan numbers and inversely, the time to steady-state increases as the Stefan number decreases. (C) 2016 Published by Elsevier Ltd.
id UNSP_5e4cfc1decc09ade398655a2da524e99
oai_identifier_str oai:repositorio.unesp.br:11449/161711
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Analytical solutions to the Stefan problem with internal heat generationStefan problemInternal heat generationSolidificationMeltingA first-order, ordinary differential equation modeling the Stefan problem (solid-liquid phase change) with internal heat generation in a plane wall is derived and the solutions are compared to the results of a computational fluid dynamics analysis. The internal heat generation term makes the governing equations non-homogeneous so the principle of superposition is used to separate the transient from steady-state portions of the heat equation, which are then solved separately. There is excellent agreement between the solutions to the differential equation and the CFD results for the movement of both the solidification and melting fronts. The solid and liquid temperature profiles show a distinct difference in slope along the interface early in the phase change process. As time increases, the changes in slope decrease and the temperature profiles become parabolic. The system reaches steady-state faster for larger Stefan numbers and inversely, the time to steady-state increases as the Stefan number decreases. (C) 2016 Published by Elsevier Ltd.Univ Idaho, Dept Mech Engn, 875 Perimeter Dr,MS 0902, Moscow, ID 83844 USASouthern Utah Univ, Dept Integrated Engn, 351 W Univ Blvd, Cedar City, UT 84720 USASao Paulo State Univ, Dept Engn Mecan, BR-15385000 Ilha Solteira, SP, BrazilSao Paulo State Univ, Dept Engn Mecan, BR-15385000 Ilha Solteira, SP, BrazilElsevier B.V.Univ IdahoSouthern Utah UnivUniversidade Estadual Paulista (Unesp)McCord, DavidCrepeau, JohnSiahpush, AliFerres Brogin, Joao Angelo [UNESP]2018-11-26T16:48:20Z2018-11-26T16:48:20Z2016-06-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article443-451application/pdfhttp://dx.doi.org/10.1016/j.applthermaleng.2016.03.122Applied Thermal Engineering. Oxford: Pergamon-elsevier Science Ltd, v. 103, p. 443-451, 2016.1359-4311http://hdl.handle.net/11449/16171110.1016/j.applthermaleng.2016.03.122WOS:000379560500045WOS000379560500045.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Thermal Engineering1,505info:eu-repo/semantics/openAccess2023-11-15T06:15:10Zoai:repositorio.unesp.br:11449/161711Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462023-11-15T06:15:10Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Analytical solutions to the Stefan problem with internal heat generation
title Analytical solutions to the Stefan problem with internal heat generation
spellingShingle Analytical solutions to the Stefan problem with internal heat generation
McCord, David
Stefan problem
Internal heat generation
Solidification
Melting
title_short Analytical solutions to the Stefan problem with internal heat generation
title_full Analytical solutions to the Stefan problem with internal heat generation
title_fullStr Analytical solutions to the Stefan problem with internal heat generation
title_full_unstemmed Analytical solutions to the Stefan problem with internal heat generation
title_sort Analytical solutions to the Stefan problem with internal heat generation
author McCord, David
author_facet McCord, David
Crepeau, John
Siahpush, Ali
Ferres Brogin, Joao Angelo [UNESP]
author_role author
author2 Crepeau, John
Siahpush, Ali
Ferres Brogin, Joao Angelo [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Univ Idaho
Southern Utah Univ
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv McCord, David
Crepeau, John
Siahpush, Ali
Ferres Brogin, Joao Angelo [UNESP]
dc.subject.por.fl_str_mv Stefan problem
Internal heat generation
Solidification
Melting
topic Stefan problem
Internal heat generation
Solidification
Melting
description A first-order, ordinary differential equation modeling the Stefan problem (solid-liquid phase change) with internal heat generation in a plane wall is derived and the solutions are compared to the results of a computational fluid dynamics analysis. The internal heat generation term makes the governing equations non-homogeneous so the principle of superposition is used to separate the transient from steady-state portions of the heat equation, which are then solved separately. There is excellent agreement between the solutions to the differential equation and the CFD results for the movement of both the solidification and melting fronts. The solid and liquid temperature profiles show a distinct difference in slope along the interface early in the phase change process. As time increases, the changes in slope decrease and the temperature profiles become parabolic. The system reaches steady-state faster for larger Stefan numbers and inversely, the time to steady-state increases as the Stefan number decreases. (C) 2016 Published by Elsevier Ltd.
publishDate 2016
dc.date.none.fl_str_mv 2016-06-25
2018-11-26T16:48:20Z
2018-11-26T16:48:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.applthermaleng.2016.03.122
Applied Thermal Engineering. Oxford: Pergamon-elsevier Science Ltd, v. 103, p. 443-451, 2016.
1359-4311
http://hdl.handle.net/11449/161711
10.1016/j.applthermaleng.2016.03.122
WOS:000379560500045
WOS000379560500045.pdf
url http://dx.doi.org/10.1016/j.applthermaleng.2016.03.122
http://hdl.handle.net/11449/161711
identifier_str_mv Applied Thermal Engineering. Oxford: Pergamon-elsevier Science Ltd, v. 103, p. 443-451, 2016.
1359-4311
10.1016/j.applthermaleng.2016.03.122
WOS:000379560500045
WOS000379560500045.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Thermal Engineering
1,505
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 443-451
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1803649719534092288