Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil

Detalhes bibliográficos
Autor(a) principal: Moreto, Victor Brunini [UNESP]
Data de Publicação: 2015
Outros Autores: Rolim, Glauco de Souza [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.4025/actasciagron.v37i4.19766
http://hdl.handle.net/11449/164996
Resumo: Forecast is the act of estimating a future event based on current data. Ten-day period (TDP) meteorological data were used for modeling: mean air temperature, precipitation and water balance components (water deficit (DEF) and surplus (EXC) and soil water storage (SWS)). Meteorological and yield data from 1990-2004 were used for calibration, and 2005-2010 were used for testing. First step was the selection of variables via correlation analysis to determine which TDP and climatic variables have more influence on the crop yield. The selected variables were used to construct models by multiple linear regression, using a stepwise backwards process. Among all analyzed models, the following was notable: Yield = -4.964 x [SWS of 2 degrees TDP of December of the previous year (OPY)] - 1.123 x [SWS of 2 degrees TDP of November OPY] + 0.949 x [EXC of 1 degrees TDP of February of the productive year (PY)] + 2.5 x [SWS of 2 degrees TDP of February OPY] + 19.125 x [EXC of 1 degrees TDP of May OPY] - 3.113 x [EXC of 3 degrees TDP of January OPY] + 1.469 x [EXC of 3 TDP of January of PY] + 3920.526, with MAPE = 5.22%, R-2 = 0.58 and RMSEs = 111.03 kg ha(-1).
id UNSP_5f340d39cb068fa80c757ccf47f9881b
oai_identifier_str oai:repositorio.unesp.br:11449/164996
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazilcrop modelwater balancepredictionproductionForecast is the act of estimating a future event based on current data. Ten-day period (TDP) meteorological data were used for modeling: mean air temperature, precipitation and water balance components (water deficit (DEF) and surplus (EXC) and soil water storage (SWS)). Meteorological and yield data from 1990-2004 were used for calibration, and 2005-2010 were used for testing. First step was the selection of variables via correlation analysis to determine which TDP and climatic variables have more influence on the crop yield. The selected variables were used to construct models by multiple linear regression, using a stepwise backwards process. Among all analyzed models, the following was notable: Yield = -4.964 x [SWS of 2 degrees TDP of December of the previous year (OPY)] - 1.123 x [SWS of 2 degrees TDP of November OPY] + 0.949 x [EXC of 1 degrees TDP of February of the productive year (PY)] + 2.5 x [SWS of 2 degrees TDP of February OPY] + 19.125 x [EXC of 1 degrees TDP of May OPY] - 3.113 x [EXC of 3 degrees TDP of January OPY] + 1.469 x [EXC of 3 TDP of January of PY] + 3920.526, with MAPE = 5.22%, R-2 = 0.58 and RMSEs = 111.03 kg ha(-1).Univ Estadual Julio de Mesquita Filho, Fac Ciencias Agr & Vet, BR-14884900 Sao Paulo, BrazilUniv Estadual Julio de Mesquita Filho, Fac Ciencias Agr & Vet, BR-14884900 Sao Paulo, BrazilUniv Estadual Maringa, Pro-reitoria Pesquisa Pos-graduacaoUniversidade Estadual Paulista (Unesp)Moreto, Victor Brunini [UNESP]Rolim, Glauco de Souza [UNESP]2018-11-27T05:46:09Z2018-11-27T05:46:09Z2015-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article403-410application/pdfhttp://dx.doi.org/10.4025/actasciagron.v37i4.19766Acta Scientiarum-agronomy. Maringa: Univ Estadual Maringa, Pro-reitoria Pesquisa Pos-graduacao, v. 37, n. 4, p. 403-410, 2015.1807-8621http://hdl.handle.net/11449/16499610.4025/actasciagron.v37i4.19766S1807-86212015000400403WOS:000366109600001S1807-86212015000400403.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengActa Scientiarum-agronomyinfo:eu-repo/semantics/openAccess2024-06-06T13:42:22Zoai:repositorio.unesp.br:11449/164996Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:28:31.130936Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil
title Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil
spellingShingle Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil
Moreto, Victor Brunini [UNESP]
crop model
water balance
prediction
production
title_short Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil
title_full Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil
title_fullStr Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil
title_full_unstemmed Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil
title_sort Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil
author Moreto, Victor Brunini [UNESP]
author_facet Moreto, Victor Brunini [UNESP]
Rolim, Glauco de Souza [UNESP]
author_role author
author2 Rolim, Glauco de Souza [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Moreto, Victor Brunini [UNESP]
Rolim, Glauco de Souza [UNESP]
dc.subject.por.fl_str_mv crop model
water balance
prediction
production
topic crop model
water balance
prediction
production
description Forecast is the act of estimating a future event based on current data. Ten-day period (TDP) meteorological data were used for modeling: mean air temperature, precipitation and water balance components (water deficit (DEF) and surplus (EXC) and soil water storage (SWS)). Meteorological and yield data from 1990-2004 were used for calibration, and 2005-2010 were used for testing. First step was the selection of variables via correlation analysis to determine which TDP and climatic variables have more influence on the crop yield. The selected variables were used to construct models by multiple linear regression, using a stepwise backwards process. Among all analyzed models, the following was notable: Yield = -4.964 x [SWS of 2 degrees TDP of December of the previous year (OPY)] - 1.123 x [SWS of 2 degrees TDP of November OPY] + 0.949 x [EXC of 1 degrees TDP of February of the productive year (PY)] + 2.5 x [SWS of 2 degrees TDP of February OPY] + 19.125 x [EXC of 1 degrees TDP of May OPY] - 3.113 x [EXC of 3 degrees TDP of January OPY] + 1.469 x [EXC of 3 TDP of January of PY] + 3920.526, with MAPE = 5.22%, R-2 = 0.58 and RMSEs = 111.03 kg ha(-1).
publishDate 2015
dc.date.none.fl_str_mv 2015-10-01
2018-11-27T05:46:09Z
2018-11-27T05:46:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.4025/actasciagron.v37i4.19766
Acta Scientiarum-agronomy. Maringa: Univ Estadual Maringa, Pro-reitoria Pesquisa Pos-graduacao, v. 37, n. 4, p. 403-410, 2015.
1807-8621
http://hdl.handle.net/11449/164996
10.4025/actasciagron.v37i4.19766
S1807-86212015000400403
WOS:000366109600001
S1807-86212015000400403.pdf
url http://dx.doi.org/10.4025/actasciagron.v37i4.19766
http://hdl.handle.net/11449/164996
identifier_str_mv Acta Scientiarum-agronomy. Maringa: Univ Estadual Maringa, Pro-reitoria Pesquisa Pos-graduacao, v. 37, n. 4, p. 403-410, 2015.
1807-8621
10.4025/actasciagron.v37i4.19766
S1807-86212015000400403
WOS:000366109600001
S1807-86212015000400403.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Acta Scientiarum-agronomy
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 403-410
application/pdf
dc.publisher.none.fl_str_mv Univ Estadual Maringa, Pro-reitoria Pesquisa Pos-graduacao
publisher.none.fl_str_mv Univ Estadual Maringa, Pro-reitoria Pesquisa Pos-graduacao
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128516860936192