Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.4025/actasciagron.v37i4.19766 http://hdl.handle.net/11449/164996 |
Resumo: | Forecast is the act of estimating a future event based on current data. Ten-day period (TDP) meteorological data were used for modeling: mean air temperature, precipitation and water balance components (water deficit (DEF) and surplus (EXC) and soil water storage (SWS)). Meteorological and yield data from 1990-2004 were used for calibration, and 2005-2010 were used for testing. First step was the selection of variables via correlation analysis to determine which TDP and climatic variables have more influence on the crop yield. The selected variables were used to construct models by multiple linear regression, using a stepwise backwards process. Among all analyzed models, the following was notable: Yield = -4.964 x [SWS of 2 degrees TDP of December of the previous year (OPY)] - 1.123 x [SWS of 2 degrees TDP of November OPY] + 0.949 x [EXC of 1 degrees TDP of February of the productive year (PY)] + 2.5 x [SWS of 2 degrees TDP of February OPY] + 19.125 x [EXC of 1 degrees TDP of May OPY] - 3.113 x [EXC of 3 degrees TDP of January OPY] + 1.469 x [EXC of 3 TDP of January of PY] + 3920.526, with MAPE = 5.22%, R-2 = 0.58 and RMSEs = 111.03 kg ha(-1). |
id |
UNSP_5f340d39cb068fa80c757ccf47f9881b |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/164996 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazilcrop modelwater balancepredictionproductionForecast is the act of estimating a future event based on current data. Ten-day period (TDP) meteorological data were used for modeling: mean air temperature, precipitation and water balance components (water deficit (DEF) and surplus (EXC) and soil water storage (SWS)). Meteorological and yield data from 1990-2004 were used for calibration, and 2005-2010 were used for testing. First step was the selection of variables via correlation analysis to determine which TDP and climatic variables have more influence on the crop yield. The selected variables were used to construct models by multiple linear regression, using a stepwise backwards process. Among all analyzed models, the following was notable: Yield = -4.964 x [SWS of 2 degrees TDP of December of the previous year (OPY)] - 1.123 x [SWS of 2 degrees TDP of November OPY] + 0.949 x [EXC of 1 degrees TDP of February of the productive year (PY)] + 2.5 x [SWS of 2 degrees TDP of February OPY] + 19.125 x [EXC of 1 degrees TDP of May OPY] - 3.113 x [EXC of 3 degrees TDP of January OPY] + 1.469 x [EXC of 3 TDP of January of PY] + 3920.526, with MAPE = 5.22%, R-2 = 0.58 and RMSEs = 111.03 kg ha(-1).Univ Estadual Julio de Mesquita Filho, Fac Ciencias Agr & Vet, BR-14884900 Sao Paulo, BrazilUniv Estadual Julio de Mesquita Filho, Fac Ciencias Agr & Vet, BR-14884900 Sao Paulo, BrazilUniv Estadual Maringa, Pro-reitoria Pesquisa Pos-graduacaoUniversidade Estadual Paulista (Unesp)Moreto, Victor Brunini [UNESP]Rolim, Glauco de Souza [UNESP]2018-11-27T05:46:09Z2018-11-27T05:46:09Z2015-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article403-410application/pdfhttp://dx.doi.org/10.4025/actasciagron.v37i4.19766Acta Scientiarum-agronomy. Maringa: Univ Estadual Maringa, Pro-reitoria Pesquisa Pos-graduacao, v. 37, n. 4, p. 403-410, 2015.1807-8621http://hdl.handle.net/11449/16499610.4025/actasciagron.v37i4.19766S1807-86212015000400403WOS:000366109600001S1807-86212015000400403.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengActa Scientiarum-agronomyinfo:eu-repo/semantics/openAccess2024-06-06T13:42:22Zoai:repositorio.unesp.br:11449/164996Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:28:31.130936Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil |
title |
Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil |
spellingShingle |
Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil Moreto, Victor Brunini [UNESP] crop model water balance prediction production |
title_short |
Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil |
title_full |
Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil |
title_fullStr |
Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil |
title_full_unstemmed |
Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil |
title_sort |
Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, Sao Paulo State region, Brazil |
author |
Moreto, Victor Brunini [UNESP] |
author_facet |
Moreto, Victor Brunini [UNESP] Rolim, Glauco de Souza [UNESP] |
author_role |
author |
author2 |
Rolim, Glauco de Souza [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Moreto, Victor Brunini [UNESP] Rolim, Glauco de Souza [UNESP] |
dc.subject.por.fl_str_mv |
crop model water balance prediction production |
topic |
crop model water balance prediction production |
description |
Forecast is the act of estimating a future event based on current data. Ten-day period (TDP) meteorological data were used for modeling: mean air temperature, precipitation and water balance components (water deficit (DEF) and surplus (EXC) and soil water storage (SWS)). Meteorological and yield data from 1990-2004 were used for calibration, and 2005-2010 were used for testing. First step was the selection of variables via correlation analysis to determine which TDP and climatic variables have more influence on the crop yield. The selected variables were used to construct models by multiple linear regression, using a stepwise backwards process. Among all analyzed models, the following was notable: Yield = -4.964 x [SWS of 2 degrees TDP of December of the previous year (OPY)] - 1.123 x [SWS of 2 degrees TDP of November OPY] + 0.949 x [EXC of 1 degrees TDP of February of the productive year (PY)] + 2.5 x [SWS of 2 degrees TDP of February OPY] + 19.125 x [EXC of 1 degrees TDP of May OPY] - 3.113 x [EXC of 3 degrees TDP of January OPY] + 1.469 x [EXC of 3 TDP of January of PY] + 3920.526, with MAPE = 5.22%, R-2 = 0.58 and RMSEs = 111.03 kg ha(-1). |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10-01 2018-11-27T05:46:09Z 2018-11-27T05:46:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.4025/actasciagron.v37i4.19766 Acta Scientiarum-agronomy. Maringa: Univ Estadual Maringa, Pro-reitoria Pesquisa Pos-graduacao, v. 37, n. 4, p. 403-410, 2015. 1807-8621 http://hdl.handle.net/11449/164996 10.4025/actasciagron.v37i4.19766 S1807-86212015000400403 WOS:000366109600001 S1807-86212015000400403.pdf |
url |
http://dx.doi.org/10.4025/actasciagron.v37i4.19766 http://hdl.handle.net/11449/164996 |
identifier_str_mv |
Acta Scientiarum-agronomy. Maringa: Univ Estadual Maringa, Pro-reitoria Pesquisa Pos-graduacao, v. 37, n. 4, p. 403-410, 2015. 1807-8621 10.4025/actasciagron.v37i4.19766 S1807-86212015000400403 WOS:000366109600001 S1807-86212015000400403.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Acta Scientiarum-agronomy |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
403-410 application/pdf |
dc.publisher.none.fl_str_mv |
Univ Estadual Maringa, Pro-reitoria Pesquisa Pos-graduacao |
publisher.none.fl_str_mv |
Univ Estadual Maringa, Pro-reitoria Pesquisa Pos-graduacao |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128516860936192 |