Global Sensitivity and Stability Analysis of a Parametrically Excited Energy Harvesting System

Detalhes bibliográficos
Autor(a) principal: Cauz, Luiz Oreste [UNESP]
Data de Publicação: 2023
Outros Autores: Chavarette, Fábio Roberto [UNESP], de Almeida, Estev˜ao Fuzaro [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.5890/JVTSD.2023.09.001
http://hdl.handle.net/11449/248863
Resumo: Energy harvesting is the process of capturing and transforming ambient energy into a useable form. Solar energy, thermal gradients, acoustical and mechanical vibrations are all examples of energy harvesting sources. Vibration Energy Harversting Systems (VEHS) are systems that employ vibrations as a source. VEHS-based energy harvesters are known as a supplementary power source, which provide small amounts of energy for slow-load applications or to charge and operate remote devices and sensors whose require small amounts of energy to operate, such as hearing aids, pacemakers, spinal cord stimulators, and microelectromechanical systems. The objective of this work is to analyze the stability of a parametrically excited energy harvesting system that uses piezoelectric materials as a transducer. The objective is to optimize the energy produced by analyzing the system’s behavior while the physical parameter values are changed. In this regard, it is essential to do a preliminary global sensitivity analysis of the physical parameters in order to determine which parameters, when altered, influence more to energy production. The Sobol’ indices are used to do the sensitivity analysis. The stability analysis is then performed using the results of Floquet’s Theory and the state transition matrix approximation techniques developed by Sinha and Butcher. Sinha and Butcher’s technique, based on Picard iterations and Chebyshev polynomial expansions, aims to find approximate solutions for periodic systems in time. An essential characteristic that is well documented in the literature is that vibrational energy harvesting systems have efficient responses when the physical parameters of the system are set so that the system operates in resonance with the parametric excitation source. As a result, when the system is in resonance with the external excitation source, significant system stability outcomes are obtained.
id UNSP_625f6ec916970917962f0b1ccd55d1ef
oai_identifier_str oai:repositorio.unesp.br:11449/248863
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Global Sensitivity and Stability Analysis of a Parametrically Excited Energy Harvesting SystemApproximate fundamental matrixGlobal sensitivity analysisResonanceStability analysisEnergy harvesting is the process of capturing and transforming ambient energy into a useable form. Solar energy, thermal gradients, acoustical and mechanical vibrations are all examples of energy harvesting sources. Vibration Energy Harversting Systems (VEHS) are systems that employ vibrations as a source. VEHS-based energy harvesters are known as a supplementary power source, which provide small amounts of energy for slow-load applications or to charge and operate remote devices and sensors whose require small amounts of energy to operate, such as hearing aids, pacemakers, spinal cord stimulators, and microelectromechanical systems. The objective of this work is to analyze the stability of a parametrically excited energy harvesting system that uses piezoelectric materials as a transducer. The objective is to optimize the energy produced by analyzing the system’s behavior while the physical parameter values are changed. In this regard, it is essential to do a preliminary global sensitivity analysis of the physical parameters in order to determine which parameters, when altered, influence more to energy production. The Sobol’ indices are used to do the sensitivity analysis. The stability analysis is then performed using the results of Floquet’s Theory and the state transition matrix approximation techniques developed by Sinha and Butcher. Sinha and Butcher’s technique, based on Picard iterations and Chebyshev polynomial expansions, aims to find approximate solutions for periodic systems in time. An essential characteristic that is well documented in the literature is that vibrational energy harvesting systems have efficient responses when the physical parameters of the system are set so that the system operates in resonance with the parametric excitation source. As a result, when the system is in resonance with the external excitation source, significant system stability outcomes are obtained.Department of Mechanical Engineering S˜ao Paulo State University (FEIS - UNESP), S˜ao Paulo StateUniversidades Estadual de Mato Grosso do Sul - UEMS Nova Andradina, Mato Grosso do SulDepartment of Mechanical Engineering S˜ao Paulo State University (FEIS - UNESP), S˜ao Paulo StateUniversidade Estadual Paulista (UNESP)Universidade Estadual de Mato Grosso do Sul (UEMS)Cauz, Luiz Oreste [UNESP]Chavarette, Fábio Roberto [UNESP]de Almeida, Estev˜ao Fuzaro [UNESP]2023-07-29T13:55:44Z2023-07-29T13:55:44Z2023-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article253-263http://dx.doi.org/10.5890/JVTSD.2023.09.001Journal of Vibration Testing and System Dynamics, v. 7, n. 3, p. 253-263, 2023.2475-482X2475-4811http://hdl.handle.net/11449/24886310.5890/JVTSD.2023.09.0012-s2.0-85159952975Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Vibration Testing and System Dynamicsinfo:eu-repo/semantics/openAccess2024-07-04T20:06:03Zoai:repositorio.unesp.br:11449/248863Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:01:36.816439Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Global Sensitivity and Stability Analysis of a Parametrically Excited Energy Harvesting System
title Global Sensitivity and Stability Analysis of a Parametrically Excited Energy Harvesting System
spellingShingle Global Sensitivity and Stability Analysis of a Parametrically Excited Energy Harvesting System
Cauz, Luiz Oreste [UNESP]
Approximate fundamental matrix
Global sensitivity analysis
Resonance
Stability analysis
title_short Global Sensitivity and Stability Analysis of a Parametrically Excited Energy Harvesting System
title_full Global Sensitivity and Stability Analysis of a Parametrically Excited Energy Harvesting System
title_fullStr Global Sensitivity and Stability Analysis of a Parametrically Excited Energy Harvesting System
title_full_unstemmed Global Sensitivity and Stability Analysis of a Parametrically Excited Energy Harvesting System
title_sort Global Sensitivity and Stability Analysis of a Parametrically Excited Energy Harvesting System
author Cauz, Luiz Oreste [UNESP]
author_facet Cauz, Luiz Oreste [UNESP]
Chavarette, Fábio Roberto [UNESP]
de Almeida, Estev˜ao Fuzaro [UNESP]
author_role author
author2 Chavarette, Fábio Roberto [UNESP]
de Almeida, Estev˜ao Fuzaro [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade Estadual de Mato Grosso do Sul (UEMS)
dc.contributor.author.fl_str_mv Cauz, Luiz Oreste [UNESP]
Chavarette, Fábio Roberto [UNESP]
de Almeida, Estev˜ao Fuzaro [UNESP]
dc.subject.por.fl_str_mv Approximate fundamental matrix
Global sensitivity analysis
Resonance
Stability analysis
topic Approximate fundamental matrix
Global sensitivity analysis
Resonance
Stability analysis
description Energy harvesting is the process of capturing and transforming ambient energy into a useable form. Solar energy, thermal gradients, acoustical and mechanical vibrations are all examples of energy harvesting sources. Vibration Energy Harversting Systems (VEHS) are systems that employ vibrations as a source. VEHS-based energy harvesters are known as a supplementary power source, which provide small amounts of energy for slow-load applications or to charge and operate remote devices and sensors whose require small amounts of energy to operate, such as hearing aids, pacemakers, spinal cord stimulators, and microelectromechanical systems. The objective of this work is to analyze the stability of a parametrically excited energy harvesting system that uses piezoelectric materials as a transducer. The objective is to optimize the energy produced by analyzing the system’s behavior while the physical parameter values are changed. In this regard, it is essential to do a preliminary global sensitivity analysis of the physical parameters in order to determine which parameters, when altered, influence more to energy production. The Sobol’ indices are used to do the sensitivity analysis. The stability analysis is then performed using the results of Floquet’s Theory and the state transition matrix approximation techniques developed by Sinha and Butcher. Sinha and Butcher’s technique, based on Picard iterations and Chebyshev polynomial expansions, aims to find approximate solutions for periodic systems in time. An essential characteristic that is well documented in the literature is that vibrational energy harvesting systems have efficient responses when the physical parameters of the system are set so that the system operates in resonance with the parametric excitation source. As a result, when the system is in resonance with the external excitation source, significant system stability outcomes are obtained.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T13:55:44Z
2023-07-29T13:55:44Z
2023-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.5890/JVTSD.2023.09.001
Journal of Vibration Testing and System Dynamics, v. 7, n. 3, p. 253-263, 2023.
2475-482X
2475-4811
http://hdl.handle.net/11449/248863
10.5890/JVTSD.2023.09.001
2-s2.0-85159952975
url http://dx.doi.org/10.5890/JVTSD.2023.09.001
http://hdl.handle.net/11449/248863
identifier_str_mv Journal of Vibration Testing and System Dynamics, v. 7, n. 3, p. 253-263, 2023.
2475-482X
2475-4811
10.5890/JVTSD.2023.09.001
2-s2.0-85159952975
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Vibration Testing and System Dynamics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 253-263
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128595132940288