Physical constraints on thermoregulation and flight drive morphological evolution in bats

Detalhes bibliográficos
Autor(a) principal: Rubalcaba, Juan G.
Data de Publicação: 2022
Outros Autores: Gouveia, Sidney F., Villalobos, Fabricio, Cruz-Neto, Ariovaldo P. [UNESP], Castro, Mario G., Amado, Talita F., Martinez, Pablo A., Navas, Carlos A., Dobrovolski, Ricardo, Diniz-Filho, José Alexandre Felizola, Olalla-Tárraga, Miguel Á
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1073/pnas.2103745119
http://hdl.handle.net/11449/223756
Resumo: SignificanceEnergetic constraints of flight and thermoregulation have long been thought to explain why most bat species are small and live predominantly in warm latitudes. We use physical models to investigate how body size, wing shape, and climate modulate these energetic constraints. Our model predicts that thermoregulatory and flight costs, respectively, impose upper and lower bounds on the wing surface-to-mass ratio, giving rise to an optimum shape, and that variations around this optimum are more constrained in cold regions. A comparative analysis across bat species supports the model's predictions, suggesting that body shape evolves toward an optimum with stronger selective pressures in cold regions. The model and data together suggest that thermoregulatory and locomotory constraints modulate the evolution of bats' morphology.
id UNSP_64acac90ead103757477220446e047e1
oai_identifier_str oai:repositorio.unesp.br:11449/223756
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Physical constraints on thermoregulation and flight drive morphological evolution in batsbatBergmann’s rulebiophysical modelChiropterathermoregulationSignificanceEnergetic constraints of flight and thermoregulation have long been thought to explain why most bat species are small and live predominantly in warm latitudes. We use physical models to investigate how body size, wing shape, and climate modulate these energetic constraints. Our model predicts that thermoregulatory and flight costs, respectively, impose upper and lower bounds on the wing surface-to-mass ratio, giving rise to an optimum shape, and that variations around this optimum are more constrained in cold regions. A comparative analysis across bat species supports the model's predictions, suggesting that body shape evolves toward an optimum with stronger selective pressures in cold regions. The model and data together suggest that thermoregulatory and locomotory constraints modulate the evolution of bats' morphology.Department of Biology McGill UniversityDepartamento de Biología y Geología Física y Química Inorgánica, Universidad Rey Juan CarlosDepartamento de Ecologia Universidade Federal de SergipeRed de Biología Evolutiva Instituto de Ecología A.C.Departamento de Biodiversidade Instituto de Biociências Universidade Estadual Paulista Júlio de Mesquita FilhoDepartamento de Biologia Universidade Federal de SergipeDepartamento de Fisiologia Instituto de Biociência Universidade de São PauloInstituto de Biologia, Universidade Federal da Bahia, 40170-115 Salvador, BA, BrazilDepartamento de Ecologia Instituto de Ciências Biológicas Universidade Federal de GoiásDepartamento de Biodiversidade Instituto de Biociências Universidade Estadual Paulista Júlio de Mesquita FilhoMcGill UniversityFísica y Química InorgánicaUniversidade Federal de Sergipe (UFS)Instituto de Ecología A.C.Universidade Estadual Paulista (UNESP)Universidade de São Paulo (USP)Universidade Federal da Bahia (UFBA)Universidade Federal de Goiás (UFG)Rubalcaba, Juan G.Gouveia, Sidney F.Villalobos, FabricioCruz-Neto, Ariovaldo P. [UNESP]Castro, Mario G.Amado, Talita F.Martinez, Pablo A.Navas, Carlos A.Dobrovolski, RicardoDiniz-Filho, José Alexandre FelizolaOlalla-Tárraga, Miguel Á2022-04-28T19:52:53Z2022-04-28T19:52:53Z2022-04-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1073/pnas.2103745119Proceedings of the National Academy of Sciences of the United States of America, v. 119, n. 15, 2022.1091-6490http://hdl.handle.net/11449/22375610.1073/pnas.21037451192-s2.0-85127497519Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the National Academy of Sciences of the United States of Americainfo:eu-repo/semantics/openAccess2022-04-28T19:52:53Zoai:repositorio.unesp.br:11449/223756Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:52:50.271809Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Physical constraints on thermoregulation and flight drive morphological evolution in bats
title Physical constraints on thermoregulation and flight drive morphological evolution in bats
spellingShingle Physical constraints on thermoregulation and flight drive morphological evolution in bats
Rubalcaba, Juan G.
bat
Bergmann’s rule
biophysical model
Chiroptera
thermoregulation
title_short Physical constraints on thermoregulation and flight drive morphological evolution in bats
title_full Physical constraints on thermoregulation and flight drive morphological evolution in bats
title_fullStr Physical constraints on thermoregulation and flight drive morphological evolution in bats
title_full_unstemmed Physical constraints on thermoregulation and flight drive morphological evolution in bats
title_sort Physical constraints on thermoregulation and flight drive morphological evolution in bats
author Rubalcaba, Juan G.
author_facet Rubalcaba, Juan G.
Gouveia, Sidney F.
Villalobos, Fabricio
Cruz-Neto, Ariovaldo P. [UNESP]
Castro, Mario G.
Amado, Talita F.
Martinez, Pablo A.
Navas, Carlos A.
Dobrovolski, Ricardo
Diniz-Filho, José Alexandre Felizola
Olalla-Tárraga, Miguel Á
author_role author
author2 Gouveia, Sidney F.
Villalobos, Fabricio
Cruz-Neto, Ariovaldo P. [UNESP]
Castro, Mario G.
Amado, Talita F.
Martinez, Pablo A.
Navas, Carlos A.
Dobrovolski, Ricardo
Diniz-Filho, José Alexandre Felizola
Olalla-Tárraga, Miguel Á
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv McGill University
Física y Química Inorgánica
Universidade Federal de Sergipe (UFS)
Instituto de Ecología A.C.
Universidade Estadual Paulista (UNESP)
Universidade de São Paulo (USP)
Universidade Federal da Bahia (UFBA)
Universidade Federal de Goiás (UFG)
dc.contributor.author.fl_str_mv Rubalcaba, Juan G.
Gouveia, Sidney F.
Villalobos, Fabricio
Cruz-Neto, Ariovaldo P. [UNESP]
Castro, Mario G.
Amado, Talita F.
Martinez, Pablo A.
Navas, Carlos A.
Dobrovolski, Ricardo
Diniz-Filho, José Alexandre Felizola
Olalla-Tárraga, Miguel Á
dc.subject.por.fl_str_mv bat
Bergmann’s rule
biophysical model
Chiroptera
thermoregulation
topic bat
Bergmann’s rule
biophysical model
Chiroptera
thermoregulation
description SignificanceEnergetic constraints of flight and thermoregulation have long been thought to explain why most bat species are small and live predominantly in warm latitudes. We use physical models to investigate how body size, wing shape, and climate modulate these energetic constraints. Our model predicts that thermoregulatory and flight costs, respectively, impose upper and lower bounds on the wing surface-to-mass ratio, giving rise to an optimum shape, and that variations around this optimum are more constrained in cold regions. A comparative analysis across bat species supports the model's predictions, suggesting that body shape evolves toward an optimum with stronger selective pressures in cold regions. The model and data together suggest that thermoregulatory and locomotory constraints modulate the evolution of bats' morphology.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-28T19:52:53Z
2022-04-28T19:52:53Z
2022-04-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1073/pnas.2103745119
Proceedings of the National Academy of Sciences of the United States of America, v. 119, n. 15, 2022.
1091-6490
http://hdl.handle.net/11449/223756
10.1073/pnas.2103745119
2-s2.0-85127497519
url http://dx.doi.org/10.1073/pnas.2103745119
http://hdl.handle.net/11449/223756
identifier_str_mv Proceedings of the National Academy of Sciences of the United States of America, v. 119, n. 15, 2022.
1091-6490
10.1073/pnas.2103745119
2-s2.0-85127497519
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings of the National Academy of Sciences of the United States of America
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129469454483456