Identifying plant species using architectural features in leaf microscopy images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1139/cjb-2015-0075 http://hdl.handle.net/11449/177709 |
Resumo: | This work proposes an analytical method to identify plant species based on microscopy images of the midrib cross-section of leaves. Unlike previous shape-based approaches based on the individual shape of external contours and cells, an architectural analysis is proposed, where the midrib is semi-automatically segmented and partitioned into histologically relevant structures composed of layers of cells and vascular structures. Using a sequence of morphological operations, a set of geometrical measures from the cells in each layer is extracted to produce a vector of features for species categorization. The method applied to a database containing 10 species of plants from the Brazilian flora achieved a success rate of 91.7%, outperforming other classical shape-based approaches published in the literature. |
id |
UNSP_696db3742444ed8167cee2b5acfa9e87 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/177709 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Identifying plant species using architectural features in leaf microscopy imagesAutomatic species identificationImage analysisMorphological featuresThis work proposes an analytical method to identify plant species based on microscopy images of the midrib cross-section of leaves. Unlike previous shape-based approaches based on the individual shape of external contours and cells, an architectural analysis is proposed, where the midrib is semi-automatically segmented and partitioned into histologically relevant structures composed of layers of cells and vascular structures. Using a sequence of morphological operations, a set of geometrical measures from the cells in each layer is extracted to produce a vector of features for species categorization. The method applied to a database containing 10 species of plants from the Brazilian flora achieved a success rate of 91.7%, outperforming other classical shape-based approaches published in the literature.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Engineering and Physical Sciences Research CouncilSão Carlos Institute of Physics University of São Paulo, P.O. Box 369Department of Biology Universidade Estadual PaulistaDepartment of Biological Sciences Universidade Estadual Paulista Júlio de Mesquita Filho UNESPDepartment of Physics National University of LittoralOral Pathology Unit School of Dentistry University Of BirminghamDepartment of Biology Universidade Estadual PaulistaDepartment of Biological Sciences Universidade Estadual Paulista Júlio de Mesquita Filho UNESPFAPESP: 2011/01523-1FAPESP: 2011/23112-3FAPESP: 2013/22205-3CNPq: 308449/2010-0CNPq: 473893/2010-0Engineering and Physical Sciences Research Council: EP/M023869/1Universidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)National University of LittoralUniversity Of BirminghamFlorindo, Joao BatistaBruno, Odemir MartinezRossatto, Davi Rodrigo [UNESP]Kolb, Rosana Marta [UNESP]Gómez, Maria CeciliaLandini, Gabriel2018-12-11T17:26:44Z2018-12-11T17:26:44Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article15-21application/pdfhttp://dx.doi.org/10.1139/cjb-2015-0075Botany, v. 94, n. 1, p. 15-21, 2016.1916-2804http://hdl.handle.net/11449/17770910.1139/cjb-2015-00752-s2.0-849538974132-s2.0-84953897413.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBotany0,611info:eu-repo/semantics/openAccess2024-06-13T17:38:53Zoai:repositorio.unesp.br:11449/177709Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:51:59.917314Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Identifying plant species using architectural features in leaf microscopy images |
title |
Identifying plant species using architectural features in leaf microscopy images |
spellingShingle |
Identifying plant species using architectural features in leaf microscopy images Florindo, Joao Batista Automatic species identification Image analysis Morphological features |
title_short |
Identifying plant species using architectural features in leaf microscopy images |
title_full |
Identifying plant species using architectural features in leaf microscopy images |
title_fullStr |
Identifying plant species using architectural features in leaf microscopy images |
title_full_unstemmed |
Identifying plant species using architectural features in leaf microscopy images |
title_sort |
Identifying plant species using architectural features in leaf microscopy images |
author |
Florindo, Joao Batista |
author_facet |
Florindo, Joao Batista Bruno, Odemir Martinez Rossatto, Davi Rodrigo [UNESP] Kolb, Rosana Marta [UNESP] Gómez, Maria Cecilia Landini, Gabriel |
author_role |
author |
author2 |
Bruno, Odemir Martinez Rossatto, Davi Rodrigo [UNESP] Kolb, Rosana Marta [UNESP] Gómez, Maria Cecilia Landini, Gabriel |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) National University of Littoral University Of Birmingham |
dc.contributor.author.fl_str_mv |
Florindo, Joao Batista Bruno, Odemir Martinez Rossatto, Davi Rodrigo [UNESP] Kolb, Rosana Marta [UNESP] Gómez, Maria Cecilia Landini, Gabriel |
dc.subject.por.fl_str_mv |
Automatic species identification Image analysis Morphological features |
topic |
Automatic species identification Image analysis Morphological features |
description |
This work proposes an analytical method to identify plant species based on microscopy images of the midrib cross-section of leaves. Unlike previous shape-based approaches based on the individual shape of external contours and cells, an architectural analysis is proposed, where the midrib is semi-automatically segmented and partitioned into histologically relevant structures composed of layers of cells and vascular structures. Using a sequence of morphological operations, a set of geometrical measures from the cells in each layer is extracted to produce a vector of features for species categorization. The method applied to a database containing 10 species of plants from the Brazilian flora achieved a success rate of 91.7%, outperforming other classical shape-based approaches published in the literature. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01 2018-12-11T17:26:44Z 2018-12-11T17:26:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1139/cjb-2015-0075 Botany, v. 94, n. 1, p. 15-21, 2016. 1916-2804 http://hdl.handle.net/11449/177709 10.1139/cjb-2015-0075 2-s2.0-84953897413 2-s2.0-84953897413.pdf |
url |
http://dx.doi.org/10.1139/cjb-2015-0075 http://hdl.handle.net/11449/177709 |
identifier_str_mv |
Botany, v. 94, n. 1, p. 15-21, 2016. 1916-2804 10.1139/cjb-2015-0075 2-s2.0-84953897413 2-s2.0-84953897413.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Botany 0,611 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
15-21 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129367476273152 |