Identifying plant species using architectural features in leaf microscopy images

Detalhes bibliográficos
Autor(a) principal: Florindo, Joao Batista
Data de Publicação: 2016
Outros Autores: Bruno, Odemir Martinez, Rossatto, Davi Rodrigo [UNESP], Kolb, Rosana Marta [UNESP], Gómez, Maria Cecilia, Landini, Gabriel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1139/cjb-2015-0075
http://hdl.handle.net/11449/177709
Resumo: This work proposes an analytical method to identify plant species based on microscopy images of the midrib cross-section of leaves. Unlike previous shape-based approaches based on the individual shape of external contours and cells, an architectural analysis is proposed, where the midrib is semi-automatically segmented and partitioned into histologically relevant structures composed of layers of cells and vascular structures. Using a sequence of morphological operations, a set of geometrical measures from the cells in each layer is extracted to produce a vector of features for species categorization. The method applied to a database containing 10 species of plants from the Brazilian flora achieved a success rate of 91.7%, outperforming other classical shape-based approaches published in the literature.
id UNSP_696db3742444ed8167cee2b5acfa9e87
oai_identifier_str oai:repositorio.unesp.br:11449/177709
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Identifying plant species using architectural features in leaf microscopy imagesAutomatic species identificationImage analysisMorphological featuresThis work proposes an analytical method to identify plant species based on microscopy images of the midrib cross-section of leaves. Unlike previous shape-based approaches based on the individual shape of external contours and cells, an architectural analysis is proposed, where the midrib is semi-automatically segmented and partitioned into histologically relevant structures composed of layers of cells and vascular structures. Using a sequence of morphological operations, a set of geometrical measures from the cells in each layer is extracted to produce a vector of features for species categorization. The method applied to a database containing 10 species of plants from the Brazilian flora achieved a success rate of 91.7%, outperforming other classical shape-based approaches published in the literature.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Engineering and Physical Sciences Research CouncilSão Carlos Institute of Physics University of São Paulo, P.O. Box 369Department of Biology Universidade Estadual PaulistaDepartment of Biological Sciences Universidade Estadual Paulista Júlio de Mesquita Filho UNESPDepartment of Physics National University of LittoralOral Pathology Unit School of Dentistry University Of BirminghamDepartment of Biology Universidade Estadual PaulistaDepartment of Biological Sciences Universidade Estadual Paulista Júlio de Mesquita Filho UNESPFAPESP: 2011/01523-1FAPESP: 2011/23112-3FAPESP: 2013/22205-3CNPq: 308449/2010-0CNPq: 473893/2010-0Engineering and Physical Sciences Research Council: EP/M023869/1Universidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)National University of LittoralUniversity Of BirminghamFlorindo, Joao BatistaBruno, Odemir MartinezRossatto, Davi Rodrigo [UNESP]Kolb, Rosana Marta [UNESP]Gómez, Maria CeciliaLandini, Gabriel2018-12-11T17:26:44Z2018-12-11T17:26:44Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article15-21application/pdfhttp://dx.doi.org/10.1139/cjb-2015-0075Botany, v. 94, n. 1, p. 15-21, 2016.1916-2804http://hdl.handle.net/11449/17770910.1139/cjb-2015-00752-s2.0-849538974132-s2.0-84953897413.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBotany0,611info:eu-repo/semantics/openAccess2024-06-13T17:38:53Zoai:repositorio.unesp.br:11449/177709Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:51:59.917314Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Identifying plant species using architectural features in leaf microscopy images
title Identifying plant species using architectural features in leaf microscopy images
spellingShingle Identifying plant species using architectural features in leaf microscopy images
Florindo, Joao Batista
Automatic species identification
Image analysis
Morphological features
title_short Identifying plant species using architectural features in leaf microscopy images
title_full Identifying plant species using architectural features in leaf microscopy images
title_fullStr Identifying plant species using architectural features in leaf microscopy images
title_full_unstemmed Identifying plant species using architectural features in leaf microscopy images
title_sort Identifying plant species using architectural features in leaf microscopy images
author Florindo, Joao Batista
author_facet Florindo, Joao Batista
Bruno, Odemir Martinez
Rossatto, Davi Rodrigo [UNESP]
Kolb, Rosana Marta [UNESP]
Gómez, Maria Cecilia
Landini, Gabriel
author_role author
author2 Bruno, Odemir Martinez
Rossatto, Davi Rodrigo [UNESP]
Kolb, Rosana Marta [UNESP]
Gómez, Maria Cecilia
Landini, Gabriel
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
National University of Littoral
University Of Birmingham
dc.contributor.author.fl_str_mv Florindo, Joao Batista
Bruno, Odemir Martinez
Rossatto, Davi Rodrigo [UNESP]
Kolb, Rosana Marta [UNESP]
Gómez, Maria Cecilia
Landini, Gabriel
dc.subject.por.fl_str_mv Automatic species identification
Image analysis
Morphological features
topic Automatic species identification
Image analysis
Morphological features
description This work proposes an analytical method to identify plant species based on microscopy images of the midrib cross-section of leaves. Unlike previous shape-based approaches based on the individual shape of external contours and cells, an architectural analysis is proposed, where the midrib is semi-automatically segmented and partitioned into histologically relevant structures composed of layers of cells and vascular structures. Using a sequence of morphological operations, a set of geometrical measures from the cells in each layer is extracted to produce a vector of features for species categorization. The method applied to a database containing 10 species of plants from the Brazilian flora achieved a success rate of 91.7%, outperforming other classical shape-based approaches published in the literature.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01
2018-12-11T17:26:44Z
2018-12-11T17:26:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1139/cjb-2015-0075
Botany, v. 94, n. 1, p. 15-21, 2016.
1916-2804
http://hdl.handle.net/11449/177709
10.1139/cjb-2015-0075
2-s2.0-84953897413
2-s2.0-84953897413.pdf
url http://dx.doi.org/10.1139/cjb-2015-0075
http://hdl.handle.net/11449/177709
identifier_str_mv Botany, v. 94, n. 1, p. 15-21, 2016.
1916-2804
10.1139/cjb-2015-0075
2-s2.0-84953897413
2-s2.0-84953897413.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Botany
0,611
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 15-21
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129367476273152