Optimizing Feature Selection through Binary Charged System Search
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/196067 |
Resumo: | Feature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be inviable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the Charged System Search (CSS), which has never been applied to this context so far. The wrapper approach combines the power of exploration of CSS together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in four public datasets have demonstrated the validity of the proposed approach can outperform some well-known swarm-based techniques. |
id |
UNSP_6bbbc662f7ed6bbc40a37d40458cff44 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/196067 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Optimizing Feature Selection through Binary Charged System SearchFeature FelectionCharged System SearchEvolutionary OptimizationFeature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be inviable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the Charged System Search (CSS), which has never been applied to this context so far. The wrapper approach combines the power of exploration of CSS together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in four public datasets have demonstrated the validity of the proposed approach can outperform some well-known swarm-based techniques.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UNESP Univ Estadual Paulista, Dept Comp, Bauru, BrazilUniv Estdual Paulista, Dept Elect Engn, Bauru, BrazilUniv Sao Paulo, Polytech Sch, Sao Paulo, BrazilFac Sudoeste Paulista, Dept Hlth, Avare, BrazilUNESP Univ Estadual Paulista, Dept Comp, Bauru, BrazilFAPESP: 2009/16206-1FAPESP: 2011/14094-1FAPESP: 2012/14158-2CNPq: 303182/2011-3SpringerUniversidade Estadual Paulista (Unesp)Univ Estdual PaulistaUniversidade de São Paulo (USP)Fac Sudoeste PaulistaRodrigues, Douglas [UNESP]Pereira, Luis A. M. [UNESP]Papa, Joao P. [UNESP]Ramos, Caio C. O.Souza, Andre N.Papa, Luciene P.Wilson, R.Hancock, E.Bors, A.Smith, W.2020-12-10T19:32:13Z2020-12-10T19:32:13Z2013-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject377-384Computer Analysis Of Images And Patterns, Pt I. Berlin: Springer-verlag Berlin, v. 8047, p. 377-384, 2013.0302-9743http://hdl.handle.net/11449/196067WOS:000345516500045Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputer Analysis Of Images And Patterns, Pt Iinfo:eu-repo/semantics/openAccess2024-04-23T16:11:12Zoai:repositorio.unesp.br:11449/196067Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:17:09.350644Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Optimizing Feature Selection through Binary Charged System Search |
title |
Optimizing Feature Selection through Binary Charged System Search |
spellingShingle |
Optimizing Feature Selection through Binary Charged System Search Rodrigues, Douglas [UNESP] Feature Felection Charged System Search Evolutionary Optimization |
title_short |
Optimizing Feature Selection through Binary Charged System Search |
title_full |
Optimizing Feature Selection through Binary Charged System Search |
title_fullStr |
Optimizing Feature Selection through Binary Charged System Search |
title_full_unstemmed |
Optimizing Feature Selection through Binary Charged System Search |
title_sort |
Optimizing Feature Selection through Binary Charged System Search |
author |
Rodrigues, Douglas [UNESP] |
author_facet |
Rodrigues, Douglas [UNESP] Pereira, Luis A. M. [UNESP] Papa, Joao P. [UNESP] Ramos, Caio C. O. Souza, Andre N. Papa, Luciene P. Wilson, R. Hancock, E. Bors, A. Smith, W. |
author_role |
author |
author2 |
Pereira, Luis A. M. [UNESP] Papa, Joao P. [UNESP] Ramos, Caio C. O. Souza, Andre N. Papa, Luciene P. Wilson, R. Hancock, E. Bors, A. Smith, W. |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Univ Estdual Paulista Universidade de São Paulo (USP) Fac Sudoeste Paulista |
dc.contributor.author.fl_str_mv |
Rodrigues, Douglas [UNESP] Pereira, Luis A. M. [UNESP] Papa, Joao P. [UNESP] Ramos, Caio C. O. Souza, Andre N. Papa, Luciene P. Wilson, R. Hancock, E. Bors, A. Smith, W. |
dc.subject.por.fl_str_mv |
Feature Felection Charged System Search Evolutionary Optimization |
topic |
Feature Felection Charged System Search Evolutionary Optimization |
description |
Feature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be inviable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the Charged System Search (CSS), which has never been applied to this context so far. The wrapper approach combines the power of exploration of CSS together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in four public datasets have demonstrated the validity of the proposed approach can outperform some well-known swarm-based techniques. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-01 2020-12-10T19:32:13Z 2020-12-10T19:32:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Computer Analysis Of Images And Patterns, Pt I. Berlin: Springer-verlag Berlin, v. 8047, p. 377-384, 2013. 0302-9743 http://hdl.handle.net/11449/196067 WOS:000345516500045 |
identifier_str_mv |
Computer Analysis Of Images And Patterns, Pt I. Berlin: Springer-verlag Berlin, v. 8047, p. 377-384, 2013. 0302-9743 WOS:000345516500045 |
url |
http://hdl.handle.net/11449/196067 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Computer Analysis Of Images And Patterns, Pt I |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
377-384 |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128341026275328 |