Optimizing Feature Selection through Binary Charged System Search

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Douglas [UNESP]
Data de Publicação: 2013
Outros Autores: Pereira, Luis A. M. [UNESP], Papa, Joao P. [UNESP], Ramos, Caio C. O., Souza, Andre N., Papa, Luciene P., Wilson, R., Hancock, E., Bors, A., Smith, W.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/196067
Resumo: Feature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be inviable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the Charged System Search (CSS), which has never been applied to this context so far. The wrapper approach combines the power of exploration of CSS together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in four public datasets have demonstrated the validity of the proposed approach can outperform some well-known swarm-based techniques.
id UNSP_6bbbc662f7ed6bbc40a37d40458cff44
oai_identifier_str oai:repositorio.unesp.br:11449/196067
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Optimizing Feature Selection through Binary Charged System SearchFeature FelectionCharged System SearchEvolutionary OptimizationFeature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be inviable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the Charged System Search (CSS), which has never been applied to this context so far. The wrapper approach combines the power of exploration of CSS together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in four public datasets have demonstrated the validity of the proposed approach can outperform some well-known swarm-based techniques.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UNESP Univ Estadual Paulista, Dept Comp, Bauru, BrazilUniv Estdual Paulista, Dept Elect Engn, Bauru, BrazilUniv Sao Paulo, Polytech Sch, Sao Paulo, BrazilFac Sudoeste Paulista, Dept Hlth, Avare, BrazilUNESP Univ Estadual Paulista, Dept Comp, Bauru, BrazilFAPESP: 2009/16206-1FAPESP: 2011/14094-1FAPESP: 2012/14158-2CNPq: 303182/2011-3SpringerUniversidade Estadual Paulista (Unesp)Univ Estdual PaulistaUniversidade de São Paulo (USP)Fac Sudoeste PaulistaRodrigues, Douglas [UNESP]Pereira, Luis A. M. [UNESP]Papa, Joao P. [UNESP]Ramos, Caio C. O.Souza, Andre N.Papa, Luciene P.Wilson, R.Hancock, E.Bors, A.Smith, W.2020-12-10T19:32:13Z2020-12-10T19:32:13Z2013-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject377-384Computer Analysis Of Images And Patterns, Pt I. Berlin: Springer-verlag Berlin, v. 8047, p. 377-384, 2013.0302-9743http://hdl.handle.net/11449/196067WOS:000345516500045Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputer Analysis Of Images And Patterns, Pt Iinfo:eu-repo/semantics/openAccess2024-04-23T16:11:12Zoai:repositorio.unesp.br:11449/196067Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:17:09.350644Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Optimizing Feature Selection through Binary Charged System Search
title Optimizing Feature Selection through Binary Charged System Search
spellingShingle Optimizing Feature Selection through Binary Charged System Search
Rodrigues, Douglas [UNESP]
Feature Felection
Charged System Search
Evolutionary Optimization
title_short Optimizing Feature Selection through Binary Charged System Search
title_full Optimizing Feature Selection through Binary Charged System Search
title_fullStr Optimizing Feature Selection through Binary Charged System Search
title_full_unstemmed Optimizing Feature Selection through Binary Charged System Search
title_sort Optimizing Feature Selection through Binary Charged System Search
author Rodrigues, Douglas [UNESP]
author_facet Rodrigues, Douglas [UNESP]
Pereira, Luis A. M. [UNESP]
Papa, Joao P. [UNESP]
Ramos, Caio C. O.
Souza, Andre N.
Papa, Luciene P.
Wilson, R.
Hancock, E.
Bors, A.
Smith, W.
author_role author
author2 Pereira, Luis A. M. [UNESP]
Papa, Joao P. [UNESP]
Ramos, Caio C. O.
Souza, Andre N.
Papa, Luciene P.
Wilson, R.
Hancock, E.
Bors, A.
Smith, W.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Univ Estdual Paulista
Universidade de São Paulo (USP)
Fac Sudoeste Paulista
dc.contributor.author.fl_str_mv Rodrigues, Douglas [UNESP]
Pereira, Luis A. M. [UNESP]
Papa, Joao P. [UNESP]
Ramos, Caio C. O.
Souza, Andre N.
Papa, Luciene P.
Wilson, R.
Hancock, E.
Bors, A.
Smith, W.
dc.subject.por.fl_str_mv Feature Felection
Charged System Search
Evolutionary Optimization
topic Feature Felection
Charged System Search
Evolutionary Optimization
description Feature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be inviable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the Charged System Search (CSS), which has never been applied to this context so far. The wrapper approach combines the power of exploration of CSS together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in four public datasets have demonstrated the validity of the proposed approach can outperform some well-known swarm-based techniques.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01
2020-12-10T19:32:13Z
2020-12-10T19:32:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv Computer Analysis Of Images And Patterns, Pt I. Berlin: Springer-verlag Berlin, v. 8047, p. 377-384, 2013.
0302-9743
http://hdl.handle.net/11449/196067
WOS:000345516500045
identifier_str_mv Computer Analysis Of Images And Patterns, Pt I. Berlin: Springer-verlag Berlin, v. 8047, p. 377-384, 2013.
0302-9743
WOS:000345516500045
url http://hdl.handle.net/11449/196067
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Computer Analysis Of Images And Patterns, Pt I
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 377-384
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128341026275328