Feature selection through binary brain storm optimization

Detalhes bibliográficos
Autor(a) principal: Papa, João P. [UNESP]
Data de Publicação: 2018
Outros Autores: Rosa, Gustavo H. [UNESP], de Souza, André N. [UNESP], Afonso, Luis C.S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.compeleceng.2018.10.013
http://hdl.handle.net/11449/189832
Resumo: Feature selection stands for the process of finding the most relevant subset of features based on some criterion, which turns out to be an optimization task. In this context, several metaheuristic techniques have been extensively studied achieving results comparable to some state-of-the-art and traditional optimization techniques. This paper introduces a variation of the Brain Storm Optimization (i.e., Binary Brain Storm Optimization) for feature selection purposes, where real-valued solutions are mapped onto a boolean hypercube using different transfer functions. The proposed Binary Brain Storm Optimization was evaluated under different scenarios and with its results compared to some state-of-the-art techniques. Its overall performance presented suitable results that are comparable to the other techniques, thus showing to be a promising tool to the problem of feature selection.
id UNSP_777a46d16c5394740aa9eda16cd7b81e
oai_identifier_str oai:repositorio.unesp.br:11449/189832
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Feature selection through binary brain storm optimizationBrain storm optimizationFeature selectionOptimum-Path forestFeature selection stands for the process of finding the most relevant subset of features based on some criterion, which turns out to be an optimization task. In this context, several metaheuristic techniques have been extensively studied achieving results comparable to some state-of-the-art and traditional optimization techniques. This paper introduces a variation of the Brain Storm Optimization (i.e., Binary Brain Storm Optimization) for feature selection purposes, where real-valued solutions are mapped onto a boolean hypercube using different transfer functions. The proposed Binary Brain Storm Optimization was evaluated under different scenarios and with its results compared to some state-of-the-art techniques. Its overall performance presented suitable results that are comparable to the other techniques, thus showing to be a promising tool to the problem of feature selection.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UNESP - São Paulo State University School of SciencesUNESP - São Paulo State University School of EngineeringUFSCar - Federal University of São Carlos Department of ComputingUNESP - São Paulo State University School of SciencesUNESP - São Paulo State University School of EngineeringFAPESP: #2013/07375-0FAPESP: #2013/08645-0FAPESP: #2014/12236-1FAPESP: #2016/19403-6FAPESP: #2017/02286-0FAPESP: #2017/22905-6CNPq: #306166/2014-3CNPq: #307066/2017-7CNPq: #308194/2017-9Universidade Estadual Paulista (Unesp)Universidade Federal de São Carlos (UFSCar)Papa, João P. [UNESP]Rosa, Gustavo H. [UNESP]de Souza, André N. [UNESP]Afonso, Luis C.S.2019-10-06T16:53:37Z2019-10-06T16:53:37Z2018-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article468-481http://dx.doi.org/10.1016/j.compeleceng.2018.10.013Computers and Electrical Engineering, v. 72, p. 468-481.0045-7906http://hdl.handle.net/11449/18983210.1016/j.compeleceng.2018.10.0132-s2.0-85055318690Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputers and Electrical Engineeringinfo:eu-repo/semantics/openAccess2024-04-23T16:11:00Zoai:repositorio.unesp.br:11449/189832Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:51:59.747701Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Feature selection through binary brain storm optimization
title Feature selection through binary brain storm optimization
spellingShingle Feature selection through binary brain storm optimization
Papa, João P. [UNESP]
Brain storm optimization
Feature selection
Optimum-Path forest
title_short Feature selection through binary brain storm optimization
title_full Feature selection through binary brain storm optimization
title_fullStr Feature selection through binary brain storm optimization
title_full_unstemmed Feature selection through binary brain storm optimization
title_sort Feature selection through binary brain storm optimization
author Papa, João P. [UNESP]
author_facet Papa, João P. [UNESP]
Rosa, Gustavo H. [UNESP]
de Souza, André N. [UNESP]
Afonso, Luis C.S.
author_role author
author2 Rosa, Gustavo H. [UNESP]
de Souza, André N. [UNESP]
Afonso, Luis C.S.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de São Carlos (UFSCar)
dc.contributor.author.fl_str_mv Papa, João P. [UNESP]
Rosa, Gustavo H. [UNESP]
de Souza, André N. [UNESP]
Afonso, Luis C.S.
dc.subject.por.fl_str_mv Brain storm optimization
Feature selection
Optimum-Path forest
topic Brain storm optimization
Feature selection
Optimum-Path forest
description Feature selection stands for the process of finding the most relevant subset of features based on some criterion, which turns out to be an optimization task. In this context, several metaheuristic techniques have been extensively studied achieving results comparable to some state-of-the-art and traditional optimization techniques. This paper introduces a variation of the Brain Storm Optimization (i.e., Binary Brain Storm Optimization) for feature selection purposes, where real-valued solutions are mapped onto a boolean hypercube using different transfer functions. The proposed Binary Brain Storm Optimization was evaluated under different scenarios and with its results compared to some state-of-the-art techniques. Its overall performance presented suitable results that are comparable to the other techniques, thus showing to be a promising tool to the problem of feature selection.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-01
2019-10-06T16:53:37Z
2019-10-06T16:53:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.compeleceng.2018.10.013
Computers and Electrical Engineering, v. 72, p. 468-481.
0045-7906
http://hdl.handle.net/11449/189832
10.1016/j.compeleceng.2018.10.013
2-s2.0-85055318690
url http://dx.doi.org/10.1016/j.compeleceng.2018.10.013
http://hdl.handle.net/11449/189832
identifier_str_mv Computers and Electrical Engineering, v. 72, p. 468-481.
0045-7906
10.1016/j.compeleceng.2018.10.013
2-s2.0-85055318690
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Computers and Electrical Engineering
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 468-481
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129130514874368