Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker

Detalhes bibliográficos
Autor(a) principal: Bondancia, Thalita J.
Data de Publicação: 2022
Outros Autores: Soares, Andrey Coatrini, Popolin-Neto, Mário, Gomes, Nathalia O., Raymundo-Pereira, Paulo A., Barud, Hernane S., Machado, Sergio A.S., Ribeiro, Sidney J.L. [UNESP], Melendez, Matias E., Carvalho, André L., Reis, Rui M., Paulovich, Fernando V., Oliveira, Osvaldo N.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.msec.2022.112676
http://hdl.handle.net/11449/241795
Resumo: Low-cost sensors to detect cancer biomarkers with high sensitivity and selectivity are essential for early diagnosis. Herein, an immunosensor was developed to detect the cancer biomarker p53 antigen in MCF7 lysates using electrical impedance spectroscopy. Interdigitated electrodes were screen printed on bacterial nanocellulose substrates, then coated with a matrix of layer-by-layer films of chitosan and chondroitin sulfate onto which a layer of anti-p53 antibodies was adsorbed. The immunosensing performance was optimized with a 3-bilayer matrix, with detection of p53 in MCF7 cell lysates at concentrations between 0.01 and 1000 Ucell. mL−1, and detection limit of 0.16 Ucell mL−1. The effective buildup of the immunosensor on bacterial nanocellulose was confirmed with polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and surface energy analysis. In spite of the high sensitivity, full selectivity with distinction of the p53-containing cell lysates and possible interferents required treating the data with a supervised machine learning approach based on decision trees. This allowed the creation of a multidimensional calibration space with 11 dimensions (frequencies used to generate decision tree rules), with which the classification of the p53-containing samples can be explained.
id UNSP_6d64fb5d392722dc3b37e8d26673ed3b
oai_identifier_str oai:repositorio.unesp.br:11449/241795
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarkerBacterial nanocelluloseImmunosensorsInformation visualizationMachine learningMultidimensional calibration spacep53Low-cost sensors to detect cancer biomarkers with high sensitivity and selectivity are essential for early diagnosis. Herein, an immunosensor was developed to detect the cancer biomarker p53 antigen in MCF7 lysates using electrical impedance spectroscopy. Interdigitated electrodes were screen printed on bacterial nanocellulose substrates, then coated with a matrix of layer-by-layer films of chitosan and chondroitin sulfate onto which a layer of anti-p53 antibodies was adsorbed. The immunosensing performance was optimized with a 3-bilayer matrix, with detection of p53 in MCF7 cell lysates at concentrations between 0.01 and 1000 Ucell. mL−1, and detection limit of 0.16 Ucell mL−1. The effective buildup of the immunosensor on bacterial nanocellulose was confirmed with polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and surface energy analysis. In spite of the high sensitivity, full selectivity with distinction of the p53-containing cell lysates and possible interferents required treating the data with a supervised machine learning approach based on decision trees. This allowed the creation of a multidimensional calibration space with 11 dimensions (frequencies used to generate decision tree rules), with which the classification of the p53-containing samples can be explained.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Instituto Nacional de Ciência e Tecnologia em Eletrônica OrgânicaConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)São Carlos Institute of Physics University of São Paulo (USP), São PauloNanotechnology National Laboratory for Agriculture (LNNA) Embrapa Instrumentação, SPFederal Institute of São Paulo (IFSP)Institute of Mathematics and Computer Sciences (ICMC) University of São Paulo (USP)São Carlos Institute of Chemistry University of São Paulo (USP), São PauloBiopolymers and Biomaterials Laboratory (BIOPOLMAT) University of Araraquara (UNIARA), São PauloInstitute of Chemistry São Paulo State University (UNESP), São PauloBarretos Cancer Hospital Molecular Oncology Research Center, São PauloFaculty of Computer Science (FCS) Dalhousie University (DAL)Life and Health Sciences Research Institute (ICVS) School of Medicine University of MinhoMolecular Carcinogenesis Program Research Center National Cancer Institute (INCA)Institute of Chemistry São Paulo State University (UNESP), São PauloCNPq: 160290/2019-8CNPq: 164569/2020-0FAPESP: 2016/01919-6FAPESP: 2018/18953-8FAPESP: 2018/22214-6FAPESP: 2019/01777-5FAPESP: 2020/09587-8CNPq: 311757/2019-7CNPq: 423952/2018-8Universidade de São Paulo (USP)Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)Federal Institute of São Paulo (IFSP)University of Araraquara (UNIARA)Universidade Estadual Paulista (UNESP)Molecular Oncology Research CenterDalhousie University (DAL)University of MinhoNational Cancer Institute (INCA)Bondancia, Thalita J.Soares, Andrey CoatriniPopolin-Neto, MárioGomes, Nathalia O.Raymundo-Pereira, Paulo A.Barud, Hernane S.Machado, Sergio A.S.Ribeiro, Sidney J.L. [UNESP]Melendez, Matias E.Carvalho, André L.Reis, Rui M.Paulovich, Fernando V.Oliveira, Osvaldo N.2023-03-02T00:28:09Z2023-03-02T00:28:09Z2022-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.msec.2022.112676Biomaterials Advances, v. 134.2772-9508http://hdl.handle.net/11449/24179510.1016/j.msec.2022.1126762-s2.0-85129396209Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBiomaterials Advancesinfo:eu-repo/semantics/openAccess2023-03-02T00:28:10Zoai:repositorio.unesp.br:11449/241795Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:19:47.258003Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker
title Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker
spellingShingle Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker
Bondancia, Thalita J.
Bacterial nanocellulose
Immunosensors
Information visualization
Machine learning
Multidimensional calibration space
p53
title_short Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker
title_full Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker
title_fullStr Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker
title_full_unstemmed Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker
title_sort Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker
author Bondancia, Thalita J.
author_facet Bondancia, Thalita J.
Soares, Andrey Coatrini
Popolin-Neto, Mário
Gomes, Nathalia O.
Raymundo-Pereira, Paulo A.
Barud, Hernane S.
Machado, Sergio A.S.
Ribeiro, Sidney J.L. [UNESP]
Melendez, Matias E.
Carvalho, André L.
Reis, Rui M.
Paulovich, Fernando V.
Oliveira, Osvaldo N.
author_role author
author2 Soares, Andrey Coatrini
Popolin-Neto, Mário
Gomes, Nathalia O.
Raymundo-Pereira, Paulo A.
Barud, Hernane S.
Machado, Sergio A.S.
Ribeiro, Sidney J.L. [UNESP]
Melendez, Matias E.
Carvalho, André L.
Reis, Rui M.
Paulovich, Fernando V.
Oliveira, Osvaldo N.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
Federal Institute of São Paulo (IFSP)
University of Araraquara (UNIARA)
Universidade Estadual Paulista (UNESP)
Molecular Oncology Research Center
Dalhousie University (DAL)
University of Minho
National Cancer Institute (INCA)
dc.contributor.author.fl_str_mv Bondancia, Thalita J.
Soares, Andrey Coatrini
Popolin-Neto, Mário
Gomes, Nathalia O.
Raymundo-Pereira, Paulo A.
Barud, Hernane S.
Machado, Sergio A.S.
Ribeiro, Sidney J.L. [UNESP]
Melendez, Matias E.
Carvalho, André L.
Reis, Rui M.
Paulovich, Fernando V.
Oliveira, Osvaldo N.
dc.subject.por.fl_str_mv Bacterial nanocellulose
Immunosensors
Information visualization
Machine learning
Multidimensional calibration space
p53
topic Bacterial nanocellulose
Immunosensors
Information visualization
Machine learning
Multidimensional calibration space
p53
description Low-cost sensors to detect cancer biomarkers with high sensitivity and selectivity are essential for early diagnosis. Herein, an immunosensor was developed to detect the cancer biomarker p53 antigen in MCF7 lysates using electrical impedance spectroscopy. Interdigitated electrodes were screen printed on bacterial nanocellulose substrates, then coated with a matrix of layer-by-layer films of chitosan and chondroitin sulfate onto which a layer of anti-p53 antibodies was adsorbed. The immunosensing performance was optimized with a 3-bilayer matrix, with detection of p53 in MCF7 cell lysates at concentrations between 0.01 and 1000 Ucell. mL−1, and detection limit of 0.16 Ucell mL−1. The effective buildup of the immunosensor on bacterial nanocellulose was confirmed with polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and surface energy analysis. In spite of the high sensitivity, full selectivity with distinction of the p53-containing cell lysates and possible interferents required treating the data with a supervised machine learning approach based on decision trees. This allowed the creation of a multidimensional calibration space with 11 dimensions (frequencies used to generate decision tree rules), with which the classification of the p53-containing samples can be explained.
publishDate 2022
dc.date.none.fl_str_mv 2022-03-01
2023-03-02T00:28:09Z
2023-03-02T00:28:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.msec.2022.112676
Biomaterials Advances, v. 134.
2772-9508
http://hdl.handle.net/11449/241795
10.1016/j.msec.2022.112676
2-s2.0-85129396209
url http://dx.doi.org/10.1016/j.msec.2022.112676
http://hdl.handle.net/11449/241795
identifier_str_mv Biomaterials Advances, v. 134.
2772-9508
10.1016/j.msec.2022.112676
2-s2.0-85129396209
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Biomaterials Advances
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129415670923264