Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.msec.2022.112676 http://hdl.handle.net/11449/241795 |
Resumo: | Low-cost sensors to detect cancer biomarkers with high sensitivity and selectivity are essential for early diagnosis. Herein, an immunosensor was developed to detect the cancer biomarker p53 antigen in MCF7 lysates using electrical impedance spectroscopy. Interdigitated electrodes were screen printed on bacterial nanocellulose substrates, then coated with a matrix of layer-by-layer films of chitosan and chondroitin sulfate onto which a layer of anti-p53 antibodies was adsorbed. The immunosensing performance was optimized with a 3-bilayer matrix, with detection of p53 in MCF7 cell lysates at concentrations between 0.01 and 1000 Ucell. mL−1, and detection limit of 0.16 Ucell mL−1. The effective buildup of the immunosensor on bacterial nanocellulose was confirmed with polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and surface energy analysis. In spite of the high sensitivity, full selectivity with distinction of the p53-containing cell lysates and possible interferents required treating the data with a supervised machine learning approach based on decision trees. This allowed the creation of a multidimensional calibration space with 11 dimensions (frequencies used to generate decision tree rules), with which the classification of the p53-containing samples can be explained. |
id |
UNSP_6d64fb5d392722dc3b37e8d26673ed3b |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/241795 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarkerBacterial nanocelluloseImmunosensorsInformation visualizationMachine learningMultidimensional calibration spacep53Low-cost sensors to detect cancer biomarkers with high sensitivity and selectivity are essential for early diagnosis. Herein, an immunosensor was developed to detect the cancer biomarker p53 antigen in MCF7 lysates using electrical impedance spectroscopy. Interdigitated electrodes were screen printed on bacterial nanocellulose substrates, then coated with a matrix of layer-by-layer films of chitosan and chondroitin sulfate onto which a layer of anti-p53 antibodies was adsorbed. The immunosensing performance was optimized with a 3-bilayer matrix, with detection of p53 in MCF7 cell lysates at concentrations between 0.01 and 1000 Ucell. mL−1, and detection limit of 0.16 Ucell mL−1. The effective buildup of the immunosensor on bacterial nanocellulose was confirmed with polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and surface energy analysis. In spite of the high sensitivity, full selectivity with distinction of the p53-containing cell lysates and possible interferents required treating the data with a supervised machine learning approach based on decision trees. This allowed the creation of a multidimensional calibration space with 11 dimensions (frequencies used to generate decision tree rules), with which the classification of the p53-containing samples can be explained.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Instituto Nacional de Ciência e Tecnologia em Eletrônica OrgânicaConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)São Carlos Institute of Physics University of São Paulo (USP), São PauloNanotechnology National Laboratory for Agriculture (LNNA) Embrapa Instrumentação, SPFederal Institute of São Paulo (IFSP)Institute of Mathematics and Computer Sciences (ICMC) University of São Paulo (USP)São Carlos Institute of Chemistry University of São Paulo (USP), São PauloBiopolymers and Biomaterials Laboratory (BIOPOLMAT) University of Araraquara (UNIARA), São PauloInstitute of Chemistry São Paulo State University (UNESP), São PauloBarretos Cancer Hospital Molecular Oncology Research Center, São PauloFaculty of Computer Science (FCS) Dalhousie University (DAL)Life and Health Sciences Research Institute (ICVS) School of Medicine University of MinhoMolecular Carcinogenesis Program Research Center National Cancer Institute (INCA)Institute of Chemistry São Paulo State University (UNESP), São PauloCNPq: 160290/2019-8CNPq: 164569/2020-0FAPESP: 2016/01919-6FAPESP: 2018/18953-8FAPESP: 2018/22214-6FAPESP: 2019/01777-5FAPESP: 2020/09587-8CNPq: 311757/2019-7CNPq: 423952/2018-8Universidade de São Paulo (USP)Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)Federal Institute of São Paulo (IFSP)University of Araraquara (UNIARA)Universidade Estadual Paulista (UNESP)Molecular Oncology Research CenterDalhousie University (DAL)University of MinhoNational Cancer Institute (INCA)Bondancia, Thalita J.Soares, Andrey CoatriniPopolin-Neto, MárioGomes, Nathalia O.Raymundo-Pereira, Paulo A.Barud, Hernane S.Machado, Sergio A.S.Ribeiro, Sidney J.L. [UNESP]Melendez, Matias E.Carvalho, André L.Reis, Rui M.Paulovich, Fernando V.Oliveira, Osvaldo N.2023-03-02T00:28:09Z2023-03-02T00:28:09Z2022-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.msec.2022.112676Biomaterials Advances, v. 134.2772-9508http://hdl.handle.net/11449/24179510.1016/j.msec.2022.1126762-s2.0-85129396209Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBiomaterials Advancesinfo:eu-repo/semantics/openAccess2023-03-02T00:28:10Zoai:repositorio.unesp.br:11449/241795Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:19:47.258003Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker |
title |
Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker |
spellingShingle |
Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker Bondancia, Thalita J. Bacterial nanocellulose Immunosensors Information visualization Machine learning Multidimensional calibration space p53 |
title_short |
Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker |
title_full |
Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker |
title_fullStr |
Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker |
title_full_unstemmed |
Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker |
title_sort |
Low-cost bacterial nanocellulose-based interdigitated biosensor to detect the p53 cancer biomarker |
author |
Bondancia, Thalita J. |
author_facet |
Bondancia, Thalita J. Soares, Andrey Coatrini Popolin-Neto, Mário Gomes, Nathalia O. Raymundo-Pereira, Paulo A. Barud, Hernane S. Machado, Sergio A.S. Ribeiro, Sidney J.L. [UNESP] Melendez, Matias E. Carvalho, André L. Reis, Rui M. Paulovich, Fernando V. Oliveira, Osvaldo N. |
author_role |
author |
author2 |
Soares, Andrey Coatrini Popolin-Neto, Mário Gomes, Nathalia O. Raymundo-Pereira, Paulo A. Barud, Hernane S. Machado, Sergio A.S. Ribeiro, Sidney J.L. [UNESP] Melendez, Matias E. Carvalho, André L. Reis, Rui M. Paulovich, Fernando V. Oliveira, Osvaldo N. |
author2_role |
author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Federal Institute of São Paulo (IFSP) University of Araraquara (UNIARA) Universidade Estadual Paulista (UNESP) Molecular Oncology Research Center Dalhousie University (DAL) University of Minho National Cancer Institute (INCA) |
dc.contributor.author.fl_str_mv |
Bondancia, Thalita J. Soares, Andrey Coatrini Popolin-Neto, Mário Gomes, Nathalia O. Raymundo-Pereira, Paulo A. Barud, Hernane S. Machado, Sergio A.S. Ribeiro, Sidney J.L. [UNESP] Melendez, Matias E. Carvalho, André L. Reis, Rui M. Paulovich, Fernando V. Oliveira, Osvaldo N. |
dc.subject.por.fl_str_mv |
Bacterial nanocellulose Immunosensors Information visualization Machine learning Multidimensional calibration space p53 |
topic |
Bacterial nanocellulose Immunosensors Information visualization Machine learning Multidimensional calibration space p53 |
description |
Low-cost sensors to detect cancer biomarkers with high sensitivity and selectivity are essential for early diagnosis. Herein, an immunosensor was developed to detect the cancer biomarker p53 antigen in MCF7 lysates using electrical impedance spectroscopy. Interdigitated electrodes were screen printed on bacterial nanocellulose substrates, then coated with a matrix of layer-by-layer films of chitosan and chondroitin sulfate onto which a layer of anti-p53 antibodies was adsorbed. The immunosensing performance was optimized with a 3-bilayer matrix, with detection of p53 in MCF7 cell lysates at concentrations between 0.01 and 1000 Ucell. mL−1, and detection limit of 0.16 Ucell mL−1. The effective buildup of the immunosensor on bacterial nanocellulose was confirmed with polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and surface energy analysis. In spite of the high sensitivity, full selectivity with distinction of the p53-containing cell lysates and possible interferents required treating the data with a supervised machine learning approach based on decision trees. This allowed the creation of a multidimensional calibration space with 11 dimensions (frequencies used to generate decision tree rules), with which the classification of the p53-containing samples can be explained. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-01 2023-03-02T00:28:09Z 2023-03-02T00:28:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.msec.2022.112676 Biomaterials Advances, v. 134. 2772-9508 http://hdl.handle.net/11449/241795 10.1016/j.msec.2022.112676 2-s2.0-85129396209 |
url |
http://dx.doi.org/10.1016/j.msec.2022.112676 http://hdl.handle.net/11449/241795 |
identifier_str_mv |
Biomaterials Advances, v. 134. 2772-9508 10.1016/j.msec.2022.112676 2-s2.0-85129396209 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Biomaterials Advances |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129415670923264 |