Superiorization of incremental optimization algorithms for statistical tomographic image reconstruction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1088/1361-6420/33/4/044010 http://hdl.handle.net/11449/159422 |
Resumo: | We propose the superiorization of incremental algorithms for tomographic image reconstruction. The resulting methods follow a better path in its way to finding the optimal solution for the maximum likelihood problem in the sense that they are closer to the Pareto optimal curve than the non-superiorized techniques. A new scaled gradient iteration is proposed and three super-iorization schemes are evaluated. Theoretical analysis of the methods as well as computational experiments with both synthetic and real data are provided. |
id |
UNSP_708104a46b86bf420525b194b76878e0 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/159422 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Superiorization of incremental optimization algorithms for statistical tomographic image reconstructionsuperiorizationconvex optimizationtomographic image reconstructionWe propose the superiorization of incremental algorithms for tomographic image reconstruction. The resulting methods follow a better path in its way to finding the optimal solution for the maximum likelihood problem in the sense that they are closer to the Pareto optimal curve than the non-superiorized techniques. A new scaled gradient iteration is proposed and three super-iorization schemes are evaluated. Theoretical analysis of the methods as well as computational experiments with both synthetic and real data are provided.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)State Univ Sao Paulo, Dept Appl Math & Stat, Sao Carlos, SP, BrazilFed Univ Technol, Curitiba, Parana, BrazilCNPEM, Brazilian Synchrotron Light Source, Campinas, SP, BrazilState Univ Sao Paulo, Dept Appl Math & Stat, Sao Carlos, SP, BrazilFAPESP: 2013/07375-0CNPq: 311476/2014-7CNPq: 442000/2014-6CNPq: 475553/2013-6Iop Publishing LtdUniversidade Estadual Paulista (Unesp)Fed Univ TechnolCNPEMHelou, E. S. [UNESP]Zibetti, M. V. W.Miqueles, E. X.2018-11-26T15:43:43Z2018-11-26T15:43:43Z2017-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article26application/pdfhttp://dx.doi.org/10.1088/1361-6420/33/4/044010Inverse Problems. Bristol: Iop Publishing Ltd, v. 33, n. 4, 26 p., 2017.0266-5611http://hdl.handle.net/11449/15942210.1088/1361-6420/33/4/044010WOS:000395928000010WOS000395928000010.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInverse Problems1,209info:eu-repo/semantics/openAccess2023-11-23T06:10:58Zoai:repositorio.unesp.br:11449/159422Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:29:03.908215Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Superiorization of incremental optimization algorithms for statistical tomographic image reconstruction |
title |
Superiorization of incremental optimization algorithms for statistical tomographic image reconstruction |
spellingShingle |
Superiorization of incremental optimization algorithms for statistical tomographic image reconstruction Helou, E. S. [UNESP] superiorization convex optimization tomographic image reconstruction |
title_short |
Superiorization of incremental optimization algorithms for statistical tomographic image reconstruction |
title_full |
Superiorization of incremental optimization algorithms for statistical tomographic image reconstruction |
title_fullStr |
Superiorization of incremental optimization algorithms for statistical tomographic image reconstruction |
title_full_unstemmed |
Superiorization of incremental optimization algorithms for statistical tomographic image reconstruction |
title_sort |
Superiorization of incremental optimization algorithms for statistical tomographic image reconstruction |
author |
Helou, E. S. [UNESP] |
author_facet |
Helou, E. S. [UNESP] Zibetti, M. V. W. Miqueles, E. X. |
author_role |
author |
author2 |
Zibetti, M. V. W. Miqueles, E. X. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Fed Univ Technol CNPEM |
dc.contributor.author.fl_str_mv |
Helou, E. S. [UNESP] Zibetti, M. V. W. Miqueles, E. X. |
dc.subject.por.fl_str_mv |
superiorization convex optimization tomographic image reconstruction |
topic |
superiorization convex optimization tomographic image reconstruction |
description |
We propose the superiorization of incremental algorithms for tomographic image reconstruction. The resulting methods follow a better path in its way to finding the optimal solution for the maximum likelihood problem in the sense that they are closer to the Pareto optimal curve than the non-superiorized techniques. A new scaled gradient iteration is proposed and three super-iorization schemes are evaluated. Theoretical analysis of the methods as well as computational experiments with both synthetic and real data are provided. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04-01 2018-11-26T15:43:43Z 2018-11-26T15:43:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1088/1361-6420/33/4/044010 Inverse Problems. Bristol: Iop Publishing Ltd, v. 33, n. 4, 26 p., 2017. 0266-5611 http://hdl.handle.net/11449/159422 10.1088/1361-6420/33/4/044010 WOS:000395928000010 WOS000395928000010.pdf |
url |
http://dx.doi.org/10.1088/1361-6420/33/4/044010 http://hdl.handle.net/11449/159422 |
identifier_str_mv |
Inverse Problems. Bristol: Iop Publishing Ltd, v. 33, n. 4, 26 p., 2017. 0266-5611 10.1088/1361-6420/33/4/044010 WOS:000395928000010 WOS000395928000010.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Inverse Problems 1,209 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
26 application/pdf |
dc.publisher.none.fl_str_mv |
Iop Publishing Ltd |
publisher.none.fl_str_mv |
Iop Publishing Ltd |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128938131587072 |