STREET REGION DETECTION FROM NORMALIZED DIGITAL SURFACE MODEL AND LASER DATA INTENSITY IMAGE
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/196084 |
Resumo: | The urban road network extraction process can be simplified by firstly detecting regions corresponding to streets, allowing a substantial reduction of the search area. As a result, the extraction process is benefited in two aspects: the computational complexity and the reliability. This paper aims at detecting street regions using only data obtained by Laser Scanner Systems. A sequence of standard image processing techniques is used to process height and intensity laser scanner data. A normalized Digital Surface Model is derived from height laser scanner data, from which regions corresponding to aboveground objects (mainly trees and buildings) are detected. Next, detected tree regions are eliminated from the aboveground regions, remaining only buildings. Then, morphological operators are applied in order to obtain elongated street ribbons and homogeneous block regions. Street regions are also detected in the intensity image. The results obtained from the radiometric and geometric laser scanner data are combined, allowing the elimination of non-street regions and the improvement of the geometry of region boundaries. The experimental results showed that the methodology proved to be efficient to detect street regions. |
id |
UNSP_73d0884b0243c1166b4e07be2456ddae |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/196084 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
STREET REGION DETECTION FROM NORMALIZED DIGITAL SURFACE MODEL AND LASER DATA INTENSITY IMAGEStreet region detectionlaser scanner datanormalized Digital Surface Modelintensity imageimage processing techniquesThe urban road network extraction process can be simplified by firstly detecting regions corresponding to streets, allowing a substantial reduction of the search area. As a result, the extraction process is benefited in two aspects: the computational complexity and the reliability. This paper aims at detecting street regions using only data obtained by Laser Scanner Systems. A sequence of standard image processing techniques is used to process height and intensity laser scanner data. A normalized Digital Surface Model is derived from height laser scanner data, from which regions corresponding to aboveground objects (mainly trees and buildings) are detected. Next, detected tree regions are eliminated from the aboveground regions, remaining only buildings. Then, morphological operators are applied in order to obtain elongated street ribbons and homogeneous block regions. Street regions are also detected in the intensity image. The results obtained from the radiometric and geometric laser scanner data are combined, allowing the elimination of non-street regions and the improvement of the geometry of region boundaries. The experimental results showed that the methodology proved to be efficient to detect street regions.Sao Paulo State Univ, UNESP, Cartog Sci Grad Program, Sao Paulo, BrazilSao Paulo State Univ, UNESP, Dept Cartog, Sao Paulo, BrazilSao Paulo State Univ, UNESP, Cartog Sci Grad Program, Sao Paulo, BrazilSao Paulo State Univ, UNESP, Dept Cartog, Sao Paulo, BrazilCopernicus Gesellschaft MbhUniversidade Estadual Paulista (Unesp)Mendes, T. S. G. [UNESP]Dal Poz, A. P. [UNESP]Stilla, U.Rottensteiner, F.Mayer, H.Jutzi, B.Butenuth, M.2020-12-10T19:32:48Z2020-12-10T19:32:48Z2011-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject197-202Pia11: Photogrammetric Image Analysis, 2011. Gottingen: Copernicus Gesellschaft Mbh, v. 38-3, n. W22, p. 197-202, 2011.2194-9034http://hdl.handle.net/11449/196084WOS:000358311000025Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPia11: Photogrammetric Image Analysis, 2011info:eu-repo/semantics/openAccess2024-06-18T15:02:40Zoai:repositorio.unesp.br:11449/196084Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-06-18T15:02:40Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
STREET REGION DETECTION FROM NORMALIZED DIGITAL SURFACE MODEL AND LASER DATA INTENSITY IMAGE |
title |
STREET REGION DETECTION FROM NORMALIZED DIGITAL SURFACE MODEL AND LASER DATA INTENSITY IMAGE |
spellingShingle |
STREET REGION DETECTION FROM NORMALIZED DIGITAL SURFACE MODEL AND LASER DATA INTENSITY IMAGE Mendes, T. S. G. [UNESP] Street region detection laser scanner data normalized Digital Surface Model intensity image image processing techniques |
title_short |
STREET REGION DETECTION FROM NORMALIZED DIGITAL SURFACE MODEL AND LASER DATA INTENSITY IMAGE |
title_full |
STREET REGION DETECTION FROM NORMALIZED DIGITAL SURFACE MODEL AND LASER DATA INTENSITY IMAGE |
title_fullStr |
STREET REGION DETECTION FROM NORMALIZED DIGITAL SURFACE MODEL AND LASER DATA INTENSITY IMAGE |
title_full_unstemmed |
STREET REGION DETECTION FROM NORMALIZED DIGITAL SURFACE MODEL AND LASER DATA INTENSITY IMAGE |
title_sort |
STREET REGION DETECTION FROM NORMALIZED DIGITAL SURFACE MODEL AND LASER DATA INTENSITY IMAGE |
author |
Mendes, T. S. G. [UNESP] |
author_facet |
Mendes, T. S. G. [UNESP] Dal Poz, A. P. [UNESP] Stilla, U. Rottensteiner, F. Mayer, H. Jutzi, B. Butenuth, M. |
author_role |
author |
author2 |
Dal Poz, A. P. [UNESP] Stilla, U. Rottensteiner, F. Mayer, H. Jutzi, B. Butenuth, M. |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Mendes, T. S. G. [UNESP] Dal Poz, A. P. [UNESP] Stilla, U. Rottensteiner, F. Mayer, H. Jutzi, B. Butenuth, M. |
dc.subject.por.fl_str_mv |
Street region detection laser scanner data normalized Digital Surface Model intensity image image processing techniques |
topic |
Street region detection laser scanner data normalized Digital Surface Model intensity image image processing techniques |
description |
The urban road network extraction process can be simplified by firstly detecting regions corresponding to streets, allowing a substantial reduction of the search area. As a result, the extraction process is benefited in two aspects: the computational complexity and the reliability. This paper aims at detecting street regions using only data obtained by Laser Scanner Systems. A sequence of standard image processing techniques is used to process height and intensity laser scanner data. A normalized Digital Surface Model is derived from height laser scanner data, from which regions corresponding to aboveground objects (mainly trees and buildings) are detected. Next, detected tree regions are eliminated from the aboveground regions, remaining only buildings. Then, morphological operators are applied in order to obtain elongated street ribbons and homogeneous block regions. Street regions are also detected in the intensity image. The results obtained from the radiometric and geometric laser scanner data are combined, allowing the elimination of non-street regions and the improvement of the geometry of region boundaries. The experimental results showed that the methodology proved to be efficient to detect street regions. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01-01 2020-12-10T19:32:48Z 2020-12-10T19:32:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Pia11: Photogrammetric Image Analysis, 2011. Gottingen: Copernicus Gesellschaft Mbh, v. 38-3, n. W22, p. 197-202, 2011. 2194-9034 http://hdl.handle.net/11449/196084 WOS:000358311000025 |
identifier_str_mv |
Pia11: Photogrammetric Image Analysis, 2011. Gottingen: Copernicus Gesellschaft Mbh, v. 38-3, n. W22, p. 197-202, 2011. 2194-9034 WOS:000358311000025 |
url |
http://hdl.handle.net/11449/196084 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Pia11: Photogrammetric Image Analysis, 2011 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
197-202 |
dc.publisher.none.fl_str_mv |
Copernicus Gesellschaft Mbh |
publisher.none.fl_str_mv |
Copernicus Gesellschaft Mbh |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1826304426988535808 |