ROAD REGION DETECTION IN URBAN AREAS COMBINING HIGH-RESOLUTION RGB IMAGE AND LASER SCANNING DATA IN A CLASSIFICATION FRAMEWORK
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/196079 |
Resumo: | This paper addresses the problem of road region detection in urban areas using an image classification approach. In order to minimize the spectral superposition of the road (asphalt) class with other classes, the Artificial Neural Networks (ANN) image classification method was used to classify geometrically-integrated high-resolution RGB aerial and laser-derived images. The RGB image was combined with different laser data layers and the ANN classification results showed that the radiometric and geometric laser data allows a better detection of road pixel. |
id |
UNSP_a833f9a2e4ad23a4ccebdffe36ef6ef9 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/196079 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
ROAD REGION DETECTION IN URBAN AREAS COMBINING HIGH-RESOLUTION RGB IMAGE AND LASER SCANNING DATA IN A CLASSIFICATION FRAMEWORKArtificial Neural NetworkRGB Aerial ImageNormalized Digital Surface ModelLaser Pulse Intensity ImageThis paper addresses the problem of road region detection in urban areas using an image classification approach. In order to minimize the spectral superposition of the road (asphalt) class with other classes, the Artificial Neural Networks (ANN) image classification method was used to classify geometrically-integrated high-resolution RGB aerial and laser-derived images. The RGB image was combined with different laser data layers and the ANN classification results showed that the radiometric and geometric laser data allows a better detection of road pixel.Sao Paulo State Univ, Dept Cartog, Presidente Prudente, SP, BrazilSao Paulo State Univ, Dept Cartog, Presidente Prudente, SP, BrazilCopernicus Gesellschaft MbhUniversidade Estadual Paulista (Unesp)Dal Poz, A. P. [UNESP]Mendes, T. S. G. [UNESP]Heipke, C.Jacobsen, K.Rottensteiner, F.Sorgel, U.2020-12-10T19:32:38Z2020-12-10T19:32:38Z2013-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject53-56Isprs Hannover Workshop 2013. Gottingen: Copernicus Gesellschaft Mbh, v. 40-1, n. W-1, p. 53-56, 2013.2194-9034http://hdl.handle.net/11449/196079WOS:000358215100010Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIsprs Hannover Workshop 2013info:eu-repo/semantics/openAccess2024-06-18T15:02:39Zoai:repositorio.unesp.br:11449/196079Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:11:21.987475Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
ROAD REGION DETECTION IN URBAN AREAS COMBINING HIGH-RESOLUTION RGB IMAGE AND LASER SCANNING DATA IN A CLASSIFICATION FRAMEWORK |
title |
ROAD REGION DETECTION IN URBAN AREAS COMBINING HIGH-RESOLUTION RGB IMAGE AND LASER SCANNING DATA IN A CLASSIFICATION FRAMEWORK |
spellingShingle |
ROAD REGION DETECTION IN URBAN AREAS COMBINING HIGH-RESOLUTION RGB IMAGE AND LASER SCANNING DATA IN A CLASSIFICATION FRAMEWORK Dal Poz, A. P. [UNESP] Artificial Neural Network RGB Aerial Image Normalized Digital Surface Model Laser Pulse Intensity Image |
title_short |
ROAD REGION DETECTION IN URBAN AREAS COMBINING HIGH-RESOLUTION RGB IMAGE AND LASER SCANNING DATA IN A CLASSIFICATION FRAMEWORK |
title_full |
ROAD REGION DETECTION IN URBAN AREAS COMBINING HIGH-RESOLUTION RGB IMAGE AND LASER SCANNING DATA IN A CLASSIFICATION FRAMEWORK |
title_fullStr |
ROAD REGION DETECTION IN URBAN AREAS COMBINING HIGH-RESOLUTION RGB IMAGE AND LASER SCANNING DATA IN A CLASSIFICATION FRAMEWORK |
title_full_unstemmed |
ROAD REGION DETECTION IN URBAN AREAS COMBINING HIGH-RESOLUTION RGB IMAGE AND LASER SCANNING DATA IN A CLASSIFICATION FRAMEWORK |
title_sort |
ROAD REGION DETECTION IN URBAN AREAS COMBINING HIGH-RESOLUTION RGB IMAGE AND LASER SCANNING DATA IN A CLASSIFICATION FRAMEWORK |
author |
Dal Poz, A. P. [UNESP] |
author_facet |
Dal Poz, A. P. [UNESP] Mendes, T. S. G. [UNESP] Heipke, C. Jacobsen, K. Rottensteiner, F. Sorgel, U. |
author_role |
author |
author2 |
Mendes, T. S. G. [UNESP] Heipke, C. Jacobsen, K. Rottensteiner, F. Sorgel, U. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Dal Poz, A. P. [UNESP] Mendes, T. S. G. [UNESP] Heipke, C. Jacobsen, K. Rottensteiner, F. Sorgel, U. |
dc.subject.por.fl_str_mv |
Artificial Neural Network RGB Aerial Image Normalized Digital Surface Model Laser Pulse Intensity Image |
topic |
Artificial Neural Network RGB Aerial Image Normalized Digital Surface Model Laser Pulse Intensity Image |
description |
This paper addresses the problem of road region detection in urban areas using an image classification approach. In order to minimize the spectral superposition of the road (asphalt) class with other classes, the Artificial Neural Networks (ANN) image classification method was used to classify geometrically-integrated high-resolution RGB aerial and laser-derived images. The RGB image was combined with different laser data layers and the ANN classification results showed that the radiometric and geometric laser data allows a better detection of road pixel. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-01-01 2020-12-10T19:32:38Z 2020-12-10T19:32:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Isprs Hannover Workshop 2013. Gottingen: Copernicus Gesellschaft Mbh, v. 40-1, n. W-1, p. 53-56, 2013. 2194-9034 http://hdl.handle.net/11449/196079 WOS:000358215100010 |
identifier_str_mv |
Isprs Hannover Workshop 2013. Gottingen: Copernicus Gesellschaft Mbh, v. 40-1, n. W-1, p. 53-56, 2013. 2194-9034 WOS:000358215100010 |
url |
http://hdl.handle.net/11449/196079 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Isprs Hannover Workshop 2013 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
53-56 |
dc.publisher.none.fl_str_mv |
Copernicus Gesellschaft Mbh |
publisher.none.fl_str_mv |
Copernicus Gesellschaft Mbh |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129169528193024 |