Enhancing Brain Storm Optimization Through Optimum-Path Forest
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/186454 |
Resumo: | Among the many interesting meta-heuristic optimization algorithms, one can find those inspired by both the swarm and social behavior of human beings. The Brain Storm Optimization (BSO) is motivated by the brainstorming process performed by human beings to find solutions and solve problems. Such process involves clustering the possible solutions, which can be sensitive to the number of groupings and the clustering technique itself. This work proposes a modification in the BSO working mechanism using the Optimum-Path Forest (OPF) algorithm, which does not require the knowledge about the number of clusters beforehand. Such skill is pretty much relevant when this information is unknown and must be set. The proposed approach is evaluated in a set of six benchmarking functions and showed promising results, outperforming the traditional BSO and a second variant makes use of the well-known Self-Organizing Maps clustering technique. |
id |
UNSP_b120f09195bd431ed07f80f1d089c1f8 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/186454 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Enhancing Brain Storm Optimization Through Optimum-Path ForestOptimum-Path ForestBrain Storm OptimizationClusteringMeta-heuristicsAmong the many interesting meta-heuristic optimization algorithms, one can find those inspired by both the swarm and social behavior of human beings. The Brain Storm Optimization (BSO) is motivated by the brainstorming process performed by human beings to find solutions and solve problems. Such process involves clustering the possible solutions, which can be sensitive to the number of groupings and the clustering technique itself. This work proposes a modification in the BSO working mechanism using the Optimum-Path Forest (OPF) algorithm, which does not require the knowledge about the number of clusters beforehand. Such skill is pretty much relevant when this information is unknown and must be set. The proposed approach is evaluated in a set of six benchmarking functions and showed promising results, outperforming the traditional BSO and a second variant makes use of the well-known Self-Organizing Maps clustering technique.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UFSCar Fed Univ Sao Carlos, Dept Comp, Sao Carlos, SP, BrazilUNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, BrazilUNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, BrazilFAPESP: 2013/07375-0FAPESP: 2014/16250-9FAPESP: 2014/12236-1FAPESP: 2016/06441-7CNPq: 306166/2014-3CNPq: 307066/2017-7IeeeUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Sugi Afonso, Luis ClaudioPassos, LeandroPapa, Joao Paulo [UNESP]IEEE2019-10-04T23:45:11Z2019-10-04T23:45:11Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject183-1882018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci). New York: Ieee, p. 183-188, 2018.http://hdl.handle.net/11449/186454WOS:000448144200032Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci)info:eu-repo/semantics/openAccess2024-04-23T16:11:12Zoai:repositorio.unesp.br:11449/186454Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:46:38.863795Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Enhancing Brain Storm Optimization Through Optimum-Path Forest |
title |
Enhancing Brain Storm Optimization Through Optimum-Path Forest |
spellingShingle |
Enhancing Brain Storm Optimization Through Optimum-Path Forest Sugi Afonso, Luis Claudio Optimum-Path Forest Brain Storm Optimization Clustering Meta-heuristics |
title_short |
Enhancing Brain Storm Optimization Through Optimum-Path Forest |
title_full |
Enhancing Brain Storm Optimization Through Optimum-Path Forest |
title_fullStr |
Enhancing Brain Storm Optimization Through Optimum-Path Forest |
title_full_unstemmed |
Enhancing Brain Storm Optimization Through Optimum-Path Forest |
title_sort |
Enhancing Brain Storm Optimization Through Optimum-Path Forest |
author |
Sugi Afonso, Luis Claudio |
author_facet |
Sugi Afonso, Luis Claudio Passos, Leandro Papa, Joao Paulo [UNESP] IEEE |
author_role |
author |
author2 |
Passos, Leandro Papa, Joao Paulo [UNESP] IEEE |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Sugi Afonso, Luis Claudio Passos, Leandro Papa, Joao Paulo [UNESP] IEEE |
dc.subject.por.fl_str_mv |
Optimum-Path Forest Brain Storm Optimization Clustering Meta-heuristics |
topic |
Optimum-Path Forest Brain Storm Optimization Clustering Meta-heuristics |
description |
Among the many interesting meta-heuristic optimization algorithms, one can find those inspired by both the swarm and social behavior of human beings. The Brain Storm Optimization (BSO) is motivated by the brainstorming process performed by human beings to find solutions and solve problems. Such process involves clustering the possible solutions, which can be sensitive to the number of groupings and the clustering technique itself. This work proposes a modification in the BSO working mechanism using the Optimum-Path Forest (OPF) algorithm, which does not require the knowledge about the number of clusters beforehand. Such skill is pretty much relevant when this information is unknown and must be set. The proposed approach is evaluated in a set of six benchmarking functions and showed promising results, outperforming the traditional BSO and a second variant makes use of the well-known Self-Organizing Maps clustering technique. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 2019-10-04T23:45:11Z 2019-10-04T23:45:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci). New York: Ieee, p. 183-188, 2018. http://hdl.handle.net/11449/186454 WOS:000448144200032 |
identifier_str_mv |
2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci). New York: Ieee, p. 183-188, 2018. WOS:000448144200032 |
url |
http://hdl.handle.net/11449/186454 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
183-188 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128275288948736 |