Enhancing Brain Storm Optimization Through Optimum-Path Forest

Detalhes bibliográficos
Autor(a) principal: Sugi Afonso, Luis Claudio
Data de Publicação: 2018
Outros Autores: Passos, Leandro, Papa, Joao Paulo [UNESP], IEEE
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/186454
Resumo: Among the many interesting meta-heuristic optimization algorithms, one can find those inspired by both the swarm and social behavior of human beings. The Brain Storm Optimization (BSO) is motivated by the brainstorming process performed by human beings to find solutions and solve problems. Such process involves clustering the possible solutions, which can be sensitive to the number of groupings and the clustering technique itself. This work proposes a modification in the BSO working mechanism using the Optimum-Path Forest (OPF) algorithm, which does not require the knowledge about the number of clusters beforehand. Such skill is pretty much relevant when this information is unknown and must be set. The proposed approach is evaluated in a set of six benchmarking functions and showed promising results, outperforming the traditional BSO and a second variant makes use of the well-known Self-Organizing Maps clustering technique.
id UNSP_b120f09195bd431ed07f80f1d089c1f8
oai_identifier_str oai:repositorio.unesp.br:11449/186454
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Enhancing Brain Storm Optimization Through Optimum-Path ForestOptimum-Path ForestBrain Storm OptimizationClusteringMeta-heuristicsAmong the many interesting meta-heuristic optimization algorithms, one can find those inspired by both the swarm and social behavior of human beings. The Brain Storm Optimization (BSO) is motivated by the brainstorming process performed by human beings to find solutions and solve problems. Such process involves clustering the possible solutions, which can be sensitive to the number of groupings and the clustering technique itself. This work proposes a modification in the BSO working mechanism using the Optimum-Path Forest (OPF) algorithm, which does not require the knowledge about the number of clusters beforehand. Such skill is pretty much relevant when this information is unknown and must be set. The proposed approach is evaluated in a set of six benchmarking functions and showed promising results, outperforming the traditional BSO and a second variant makes use of the well-known Self-Organizing Maps clustering technique.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UFSCar Fed Univ Sao Carlos, Dept Comp, Sao Carlos, SP, BrazilUNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, BrazilUNESP Sao Paulo State Univ, Sch Sci, Bauru, SP, BrazilFAPESP: 2013/07375-0FAPESP: 2014/16250-9FAPESP: 2014/12236-1FAPESP: 2016/06441-7CNPq: 306166/2014-3CNPq: 307066/2017-7IeeeUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Sugi Afonso, Luis ClaudioPassos, LeandroPapa, Joao Paulo [UNESP]IEEE2019-10-04T23:45:11Z2019-10-04T23:45:11Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject183-1882018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci). New York: Ieee, p. 183-188, 2018.http://hdl.handle.net/11449/186454WOS:000448144200032Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci)info:eu-repo/semantics/openAccess2024-04-23T16:11:12Zoai:repositorio.unesp.br:11449/186454Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:46:38.863795Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Enhancing Brain Storm Optimization Through Optimum-Path Forest
title Enhancing Brain Storm Optimization Through Optimum-Path Forest
spellingShingle Enhancing Brain Storm Optimization Through Optimum-Path Forest
Sugi Afonso, Luis Claudio
Optimum-Path Forest
Brain Storm Optimization
Clustering
Meta-heuristics
title_short Enhancing Brain Storm Optimization Through Optimum-Path Forest
title_full Enhancing Brain Storm Optimization Through Optimum-Path Forest
title_fullStr Enhancing Brain Storm Optimization Through Optimum-Path Forest
title_full_unstemmed Enhancing Brain Storm Optimization Through Optimum-Path Forest
title_sort Enhancing Brain Storm Optimization Through Optimum-Path Forest
author Sugi Afonso, Luis Claudio
author_facet Sugi Afonso, Luis Claudio
Passos, Leandro
Papa, Joao Paulo [UNESP]
IEEE
author_role author
author2 Passos, Leandro
Papa, Joao Paulo [UNESP]
IEEE
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Sugi Afonso, Luis Claudio
Passos, Leandro
Papa, Joao Paulo [UNESP]
IEEE
dc.subject.por.fl_str_mv Optimum-Path Forest
Brain Storm Optimization
Clustering
Meta-heuristics
topic Optimum-Path Forest
Brain Storm Optimization
Clustering
Meta-heuristics
description Among the many interesting meta-heuristic optimization algorithms, one can find those inspired by both the swarm and social behavior of human beings. The Brain Storm Optimization (BSO) is motivated by the brainstorming process performed by human beings to find solutions and solve problems. Such process involves clustering the possible solutions, which can be sensitive to the number of groupings and the clustering technique itself. This work proposes a modification in the BSO working mechanism using the Optimum-Path Forest (OPF) algorithm, which does not require the knowledge about the number of clusters beforehand. Such skill is pretty much relevant when this information is unknown and must be set. The proposed approach is evaluated in a set of six benchmarking functions and showed promising results, outperforming the traditional BSO and a second variant makes use of the well-known Self-Organizing Maps clustering technique.
publishDate 2018
dc.date.none.fl_str_mv 2018-01-01
2019-10-04T23:45:11Z
2019-10-04T23:45:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci). New York: Ieee, p. 183-188, 2018.
http://hdl.handle.net/11449/186454
WOS:000448144200032
identifier_str_mv 2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci). New York: Ieee, p. 183-188, 2018.
WOS:000448144200032
url http://hdl.handle.net/11449/186454
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 183-188
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128275288948736