Exact boundary control for the wave equation in a polyhedral time-dependent domain

Detalhes bibliográficos
Autor(a) principal: Bastos, W. D.
Data de Publicação: 1999
Outros Autores: Ferreira, J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/S0893-9659(99)00024-5
http://hdl.handle.net/11449/37408
Resumo: We establish exact boundary controllability for the wave equation in a polyhedral domain where a part of the boundary moves slowly with constant speed in a small interval of time. The control on the moving part of the boundary is given by the conormal derivative associated with the wave operator while in the fixed part the control is of Neuman type. For initial state H-1 x L-2 we obtain controls in L-2. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
id UNSP_7f9c1bf33a05625e1fd18c63e910e43d
oai_identifier_str oai:repositorio.unesp.br:11449/37408
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Exact boundary control for the wave equation in a polyhedral time-dependent domainboundary controllabilitywave equationWe establish exact boundary controllability for the wave equation in a polyhedral domain where a part of the boundary moves slowly with constant speed in a small interval of time. The control on the moving part of the boundary is given by the conormal derivative associated with the wave operator while in the fixed part the control is of Neuman type. For initial state H-1 x L-2 we obtain controls in L-2. (C) 1999 Elsevier B.V. Ltd. All rights reserved.Univ Estadual Paulista, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, SP, BrazilUniv Estadual Maringa, Dept Matemat, DMA, BR-87020900 Maringa, Parana, BrazilUniv Estadual Paulista, Dept Matemat, BR-15054000 Sao Jose do Rio Preto, SP, BrazilElsevier B.V.Universidade Estadual Paulista (Unesp)Universidade Estadual de Maringá (UEM)Bastos, W. D.Ferreira, J.2014-05-20T15:27:25Z2014-05-20T15:27:25Z1999-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1-5application/pdfhttp://dx.doi.org/10.1016/S0893-9659(99)00024-5Applied Mathematics Letters. Oxford: Pergamon-Elsevier B.V., v. 12, n. 4, p. 1-5, 1999.0893-9659http://hdl.handle.net/11449/3740810.1016/S0893-9659(99)00024-5WOS:000079312600001WOS000079312600001.pdf6294876435136954Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Mathematics Letters2.4621,457info:eu-repo/semantics/openAccess2023-11-11T06:08:20Zoai:repositorio.unesp.br:11449/37408Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:21:10.411200Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Exact boundary control for the wave equation in a polyhedral time-dependent domain
title Exact boundary control for the wave equation in a polyhedral time-dependent domain
spellingShingle Exact boundary control for the wave equation in a polyhedral time-dependent domain
Bastos, W. D.
boundary controllability
wave equation
title_short Exact boundary control for the wave equation in a polyhedral time-dependent domain
title_full Exact boundary control for the wave equation in a polyhedral time-dependent domain
title_fullStr Exact boundary control for the wave equation in a polyhedral time-dependent domain
title_full_unstemmed Exact boundary control for the wave equation in a polyhedral time-dependent domain
title_sort Exact boundary control for the wave equation in a polyhedral time-dependent domain
author Bastos, W. D.
author_facet Bastos, W. D.
Ferreira, J.
author_role author
author2 Ferreira, J.
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Estadual de Maringá (UEM)
dc.contributor.author.fl_str_mv Bastos, W. D.
Ferreira, J.
dc.subject.por.fl_str_mv boundary controllability
wave equation
topic boundary controllability
wave equation
description We establish exact boundary controllability for the wave equation in a polyhedral domain where a part of the boundary moves slowly with constant speed in a small interval of time. The control on the moving part of the boundary is given by the conormal derivative associated with the wave operator while in the fixed part the control is of Neuman type. For initial state H-1 x L-2 we obtain controls in L-2. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
publishDate 1999
dc.date.none.fl_str_mv 1999-05-01
2014-05-20T15:27:25Z
2014-05-20T15:27:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/S0893-9659(99)00024-5
Applied Mathematics Letters. Oxford: Pergamon-Elsevier B.V., v. 12, n. 4, p. 1-5, 1999.
0893-9659
http://hdl.handle.net/11449/37408
10.1016/S0893-9659(99)00024-5
WOS:000079312600001
WOS000079312600001.pdf
6294876435136954
url http://dx.doi.org/10.1016/S0893-9659(99)00024-5
http://hdl.handle.net/11449/37408
identifier_str_mv Applied Mathematics Letters. Oxford: Pergamon-Elsevier B.V., v. 12, n. 4, p. 1-5, 1999.
0893-9659
10.1016/S0893-9659(99)00024-5
WOS:000079312600001
WOS000079312600001.pdf
6294876435136954
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Mathematics Letters
2.462
1,457
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1-5
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128796727967744