Nonlinear Sliding of Discontinuous Vector Fields and Singular Perturbation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s12591-018-0439-1 http://hdl.handle.net/11449/200147 |
Resumo: | We consider piecewise smooth vector fields (PSVF) defined in open sets M⊆ Rn with switching manifold being a smooth surface Σ. We assume that M\ Σ contains exactly two connected regions, namely Σ + and Σ -. Then, the PSVF are given by pairs X= (X+, X-) , with X= X+ in Σ + and X= X- in Σ -. A regularization of X is a 1-parameter family of smooth vector fields Xε, ε> 0 , satisfying that Xε converges pointwise to X on M\ Σ , when ε→ 0. Inspired by the Fenichel Theory, the sliding and sewing dynamics on the discontinuity locus Σ can be defined as some sort of limit of the dynamics of a nearby smooth regularization Xε. While the linear regularization requires that for every ε> 0 the regularized field Xε is in the convex combination of X+ and X-, the nonlinear regularization requires only that Xε is in a continuous combination of X+ and X-. We prove that, for both cases, the sliding dynamics on Σ is determined by the reduced dynamics on the critical manifold of a singular perturbation problem. We apply our techniques in the description of the nonlinear regularization of normal forms of PSVF in R2 and in R3. |
id |
UNSP_7fa13a25fdcef8e052c815f142f53933 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/200147 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Nonlinear Sliding of Discontinuous Vector Fields and Singular PerturbationNon-smooth vector fieldsRegularizationSingular perturbationSliding vector fieldsVector fieldsWe consider piecewise smooth vector fields (PSVF) defined in open sets M⊆ Rn with switching manifold being a smooth surface Σ. We assume that M\ Σ contains exactly two connected regions, namely Σ + and Σ -. Then, the PSVF are given by pairs X= (X+, X-) , with X= X+ in Σ + and X= X- in Σ -. A regularization of X is a 1-parameter family of smooth vector fields Xε, ε> 0 , satisfying that Xε converges pointwise to X on M\ Σ , when ε→ 0. Inspired by the Fenichel Theory, the sliding and sewing dynamics on the discontinuity locus Σ can be defined as some sort of limit of the dynamics of a nearby smooth regularization Xε. While the linear regularization requires that for every ε> 0 the regularized field Xε is in the convex combination of X+ and X-, the nonlinear regularization requires only that Xε is in a continuous combination of X+ and X-. We prove that, for both cases, the sliding dynamics on Σ is determined by the reduced dynamics on the critical manifold of a singular perturbation problem. We apply our techniques in the description of the nonlinear regularization of normal forms of PSVF in R2 and in R3.Departamento de Matemática IBILCE-UNESP, Rua C. Colombo, 2265Departamento de Matemática Universidade Estadual de Campinas, Rua Sérgio Buarque de Holanda, 651, Cidade Universitária Zeferino VazDepartamento de Matemática IBILCE-UNESP, Rua C. Colombo, 2265Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)da Silva, P. R. [UNESP]Meza-Sarmiento, I. S. [UNESP]Novaes, D. D.2020-12-12T01:58:56Z2020-12-12T01:58:56Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s12591-018-0439-1Differential Equations and Dynamical Systems.0974-68700971-3514http://hdl.handle.net/11449/20014710.1007/s12591-018-0439-12-s2.0-85081330630Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengDifferential Equations and Dynamical Systemsinfo:eu-repo/semantics/openAccess2021-10-23T12:23:59Zoai:repositorio.unesp.br:11449/200147Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:03:28.968420Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Nonlinear Sliding of Discontinuous Vector Fields and Singular Perturbation |
title |
Nonlinear Sliding of Discontinuous Vector Fields and Singular Perturbation |
spellingShingle |
Nonlinear Sliding of Discontinuous Vector Fields and Singular Perturbation da Silva, P. R. [UNESP] Non-smooth vector fields Regularization Singular perturbation Sliding vector fields Vector fields |
title_short |
Nonlinear Sliding of Discontinuous Vector Fields and Singular Perturbation |
title_full |
Nonlinear Sliding of Discontinuous Vector Fields and Singular Perturbation |
title_fullStr |
Nonlinear Sliding of Discontinuous Vector Fields and Singular Perturbation |
title_full_unstemmed |
Nonlinear Sliding of Discontinuous Vector Fields and Singular Perturbation |
title_sort |
Nonlinear Sliding of Discontinuous Vector Fields and Singular Perturbation |
author |
da Silva, P. R. [UNESP] |
author_facet |
da Silva, P. R. [UNESP] Meza-Sarmiento, I. S. [UNESP] Novaes, D. D. |
author_role |
author |
author2 |
Meza-Sarmiento, I. S. [UNESP] Novaes, D. D. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
da Silva, P. R. [UNESP] Meza-Sarmiento, I. S. [UNESP] Novaes, D. D. |
dc.subject.por.fl_str_mv |
Non-smooth vector fields Regularization Singular perturbation Sliding vector fields Vector fields |
topic |
Non-smooth vector fields Regularization Singular perturbation Sliding vector fields Vector fields |
description |
We consider piecewise smooth vector fields (PSVF) defined in open sets M⊆ Rn with switching manifold being a smooth surface Σ. We assume that M\ Σ contains exactly two connected regions, namely Σ + and Σ -. Then, the PSVF are given by pairs X= (X+, X-) , with X= X+ in Σ + and X= X- in Σ -. A regularization of X is a 1-parameter family of smooth vector fields Xε, ε> 0 , satisfying that Xε converges pointwise to X on M\ Σ , when ε→ 0. Inspired by the Fenichel Theory, the sliding and sewing dynamics on the discontinuity locus Σ can be defined as some sort of limit of the dynamics of a nearby smooth regularization Xε. While the linear regularization requires that for every ε> 0 the regularized field Xε is in the convex combination of X+ and X-, the nonlinear regularization requires only that Xε is in a continuous combination of X+ and X-. We prove that, for both cases, the sliding dynamics on Σ is determined by the reduced dynamics on the critical manifold of a singular perturbation problem. We apply our techniques in the description of the nonlinear regularization of normal forms of PSVF in R2 and in R3. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T01:58:56Z 2020-12-12T01:58:56Z 2020-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s12591-018-0439-1 Differential Equations and Dynamical Systems. 0974-6870 0971-3514 http://hdl.handle.net/11449/200147 10.1007/s12591-018-0439-1 2-s2.0-85081330630 |
url |
http://dx.doi.org/10.1007/s12591-018-0439-1 http://hdl.handle.net/11449/200147 |
identifier_str_mv |
Differential Equations and Dynamical Systems. 0974-6870 0971-3514 10.1007/s12591-018-0439-1 2-s2.0-85081330630 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Differential Equations and Dynamical Systems |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129279308857344 |