Limit cycles for singular perturbation problems via inverse integrating factor

Detalhes bibliográficos
Autor(a) principal: Llibre, Jaume
Data de Publicação: 2008
Outros Autores: Medrado, João C.R., Da Silva, Paulo R. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.5269/bspm.v26i1-2.7401
http://hdl.handle.net/11449/70752
Resumo: In this paper singularly perturbed vector fields Xε defined in ℝ2 are discussed. The main results use the solutions of the linear partial differential equation XεV = div(Xε)V to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdorff distance. © SPM.
id UNSP_b01f4f802fd2d11e69d667fa0ffc452d
oai_identifier_str oai:repositorio.unesp.br:11449/70752
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Limit cycles for singular perturbation problems via inverse integrating factorInverse integrating factoLimit cyclesSingular perturbationVector fieldsIn this paper singularly perturbed vector fields Xε defined in ℝ2 are discussed. The main results use the solutions of the linear partial differential equation XεV = div(Xε)V to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdorff distance. © SPM.Departament de Matemàtiques Universitat Autònoma de Barcelona, 08193 Bellaterra, BarcelonaInstituto de Matemática e Estatística UFG, Goiania 74001970, GOIBILCE-UNESP, Rua C. Colombo, 2265, CEP 15054-000 S. J. Rio Preto SPIBILCE-UNESP, Rua C. Colombo, 2265, CEP 15054-000 S. J. Rio Preto SPUniversitat Autònoma de BarcelonaUFGUniversidade Estadual Paulista (Unesp)Llibre, JaumeMedrado, João C.R.Da Silva, Paulo R. [UNESP]2014-05-27T11:23:45Z2014-05-27T11:23:45Z2008-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article41-52application/pdfhttp://dx.doi.org/10.5269/bspm.v26i1-2.7401Boletim da Sociedade Paranaense de Matematica, v. 26, n. 1-2, p. 41-52, 2008.0037-87122175-1188http://hdl.handle.net/11449/7075210.5269/bspm.v26i1-2.74012-s2.0-848813630912-s2.0-84881363091.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBoletim da Sociedade Paranaense de Matematica0,2100,210info:eu-repo/semantics/openAccess2023-10-11T06:04:17Zoai:repositorio.unesp.br:11449/70752Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:35:46.338766Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Limit cycles for singular perturbation problems via inverse integrating factor
title Limit cycles for singular perturbation problems via inverse integrating factor
spellingShingle Limit cycles for singular perturbation problems via inverse integrating factor
Llibre, Jaume
Inverse integrating facto
Limit cycles
Singular perturbation
Vector fields
title_short Limit cycles for singular perturbation problems via inverse integrating factor
title_full Limit cycles for singular perturbation problems via inverse integrating factor
title_fullStr Limit cycles for singular perturbation problems via inverse integrating factor
title_full_unstemmed Limit cycles for singular perturbation problems via inverse integrating factor
title_sort Limit cycles for singular perturbation problems via inverse integrating factor
author Llibre, Jaume
author_facet Llibre, Jaume
Medrado, João C.R.
Da Silva, Paulo R. [UNESP]
author_role author
author2 Medrado, João C.R.
Da Silva, Paulo R. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universitat Autònoma de Barcelona
UFG
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Llibre, Jaume
Medrado, João C.R.
Da Silva, Paulo R. [UNESP]
dc.subject.por.fl_str_mv Inverse integrating facto
Limit cycles
Singular perturbation
Vector fields
topic Inverse integrating facto
Limit cycles
Singular perturbation
Vector fields
description In this paper singularly perturbed vector fields Xε defined in ℝ2 are discussed. The main results use the solutions of the linear partial differential equation XεV = div(Xε)V to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdorff distance. © SPM.
publishDate 2008
dc.date.none.fl_str_mv 2008-12-01
2014-05-27T11:23:45Z
2014-05-27T11:23:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.5269/bspm.v26i1-2.7401
Boletim da Sociedade Paranaense de Matematica, v. 26, n. 1-2, p. 41-52, 2008.
0037-8712
2175-1188
http://hdl.handle.net/11449/70752
10.5269/bspm.v26i1-2.7401
2-s2.0-84881363091
2-s2.0-84881363091.pdf
url http://dx.doi.org/10.5269/bspm.v26i1-2.7401
http://hdl.handle.net/11449/70752
identifier_str_mv Boletim da Sociedade Paranaense de Matematica, v. 26, n. 1-2, p. 41-52, 2008.
0037-8712
2175-1188
10.5269/bspm.v26i1-2.7401
2-s2.0-84881363091
2-s2.0-84881363091.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Boletim da Sociedade Paranaense de Matematica
0,210
0,210
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 41-52
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128384512819200