Classification of petroleum well drilling operations with a hybrid particle swarm/ant colony algorithm
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-642-02568-6_31 http://hdl.handle.net/11449/71234 |
Resumo: | This paper describes an investigation of the hybrid PSO/ACO algorithm to classify automatically the well drilling operation stages. The method feasibility is demonstrated by its application to real mud-logging dataset. The results are compared with bio-inspired methods, and rule induction and decision tree algorithms for data mining. © 2009 Springer Berlin Heidelberg. |
id |
UNSP_8098fc0a5d99c2d45e81697f21cd71d5 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/71234 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Classification of petroleum well drilling operations with a hybrid particle swarm/ant colony algorithmBio-inspiredColony algorithmsData setsDecision-tree algorithmHybrid particlesRule inductionData miningDecision treesIntelligent systemsMud loggingOil wellsPetroleum industryWell drillingThis paper describes an investigation of the hybrid PSO/ACO algorithm to classify automatically the well drilling operation stages. The method feasibility is demonstrated by its application to real mud-logging dataset. The results are compared with bio-inspired methods, and rule induction and decision tree algorithms for data mining. © 2009 Springer Berlin Heidelberg.UNESP/IGCE/DEMAC, C.P. 178, Rio Claro (SP) CEP 13506-900UNICAMP/FEM/DEP, C.P. 6122, Campinas (SP) CEP 13081-970UNESP/IGCE/DEMAC, C.P. 178, Rio Claro (SP) CEP 13506-900Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Serapião, Adriane B. S. [UNESP]Mendes, José Ricardo P.2014-05-27T11:24:02Z2014-05-27T11:24:02Z2009-11-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject301-310http://dx.doi.org/10.1007/978-3-642-02568-6_31Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 5579 LNAI, p. 301-310.0302-97431611-3349http://hdl.handle.net/11449/7123410.1007/978-3-642-02568-6_31WOS:0002699723000312-s2.0-7035063309969978143431898600000-0001-9728-7092Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2021-10-23T21:44:32Zoai:repositorio.unesp.br:11449/71234Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:45:26.363950Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Classification of petroleum well drilling operations with a hybrid particle swarm/ant colony algorithm |
title |
Classification of petroleum well drilling operations with a hybrid particle swarm/ant colony algorithm |
spellingShingle |
Classification of petroleum well drilling operations with a hybrid particle swarm/ant colony algorithm Serapião, Adriane B. S. [UNESP] Bio-inspired Colony algorithms Data sets Decision-tree algorithm Hybrid particles Rule induction Data mining Decision trees Intelligent systems Mud logging Oil wells Petroleum industry Well drilling |
title_short |
Classification of petroleum well drilling operations with a hybrid particle swarm/ant colony algorithm |
title_full |
Classification of petroleum well drilling operations with a hybrid particle swarm/ant colony algorithm |
title_fullStr |
Classification of petroleum well drilling operations with a hybrid particle swarm/ant colony algorithm |
title_full_unstemmed |
Classification of petroleum well drilling operations with a hybrid particle swarm/ant colony algorithm |
title_sort |
Classification of petroleum well drilling operations with a hybrid particle swarm/ant colony algorithm |
author |
Serapião, Adriane B. S. [UNESP] |
author_facet |
Serapião, Adriane B. S. [UNESP] Mendes, José Ricardo P. |
author_role |
author |
author2 |
Mendes, José Ricardo P. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Serapião, Adriane B. S. [UNESP] Mendes, José Ricardo P. |
dc.subject.por.fl_str_mv |
Bio-inspired Colony algorithms Data sets Decision-tree algorithm Hybrid particles Rule induction Data mining Decision trees Intelligent systems Mud logging Oil wells Petroleum industry Well drilling |
topic |
Bio-inspired Colony algorithms Data sets Decision-tree algorithm Hybrid particles Rule induction Data mining Decision trees Intelligent systems Mud logging Oil wells Petroleum industry Well drilling |
description |
This paper describes an investigation of the hybrid PSO/ACO algorithm to classify automatically the well drilling operation stages. The method feasibility is demonstrated by its application to real mud-logging dataset. The results are compared with bio-inspired methods, and rule induction and decision tree algorithms for data mining. © 2009 Springer Berlin Heidelberg. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-11-09 2014-05-27T11:24:02Z 2014-05-27T11:24:02Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-642-02568-6_31 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 5579 LNAI, p. 301-310. 0302-9743 1611-3349 http://hdl.handle.net/11449/71234 10.1007/978-3-642-02568-6_31 WOS:000269972300031 2-s2.0-70350633099 6997814343189860 0000-0001-9728-7092 |
url |
http://dx.doi.org/10.1007/978-3-642-02568-6_31 http://hdl.handle.net/11449/71234 |
identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 5579 LNAI, p. 301-310. 0302-9743 1611-3349 10.1007/978-3-642-02568-6_31 WOS:000269972300031 2-s2.0-70350633099 6997814343189860 0000-0001-9728-7092 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 0,295 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
301-310 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128854063054848 |