Statistical investigation and thermal properties for a 1-D impact system with dissipation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.physleta.2016.03.032 http://hdl.handle.net/11449/168517 |
Resumo: | The behavior of the average velocity, its deviation and average squared velocity are characterized using three techniques for a 1-D dissipative impact system. The system - a particle, or an ensemble of non-interacting particles, moving in a constant gravitation field and colliding with a varying platform - is described by a nonlinear mapping. The average squared velocity allows to describe the temperature for an ensemble of particles as a function of the parameters using: (i) straightforward numerical simulations; (ii) analytically from the dynamical equations; (iii) using the probability distribution function. Comparing analytical and numerical results for the three techniques, one can check the robustness of the developed formalism, where we are able to estimate numerical values for the statistical variables, without doing extensive numerical simulations. Also, extension to other dynamical systems is immediate, including time dependent billiards. |
id |
UNSP_81cbc498f8e4d4ebab1ff877ca3a0930 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/168517 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Statistical investigation and thermal properties for a 1-D impact system with dissipationChaosCritical exponentsScaling lawThermodynamicsThe behavior of the average velocity, its deviation and average squared velocity are characterized using three techniques for a 1-D dissipative impact system. The system - a particle, or an ensemble of non-interacting particles, moving in a constant gravitation field and colliding with a varying platform - is described by a nonlinear mapping. The average squared velocity allows to describe the temperature for an ensemble of particles as a function of the parameters using: (i) straightforward numerical simulations; (ii) analytically from the dynamical equations; (iii) using the probability distribution function. Comparing analytical and numerical results for the three techniques, one can check the robustness of the developed formalism, where we are able to estimate numerical values for the statistical variables, without doing extensive numerical simulations. Also, extension to other dynamical systems is immediate, including time dependent billiards.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Departamento de Física UNESP - Univ. Estadual Paulista, Av. 24A, 1515, Bela VistaDepartamento de Física UNESP - Univ. Estadual Paulista, Av. 24A, 1515, Bela VistaFAPESP: 2012/23688-5FAPESP: 2014/25316-3CNPq: 303707/2015-1Universidade Estadual Paulista (Unesp)Díaz I., Gabriel [UNESP]Livorati, André L.P. [UNESP]Leonel, Edson D. [UNESP]2018-12-11T16:41:37Z2018-12-11T16:41:37Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1830-1838application/pdfhttp://dx.doi.org/10.1016/j.physleta.2016.03.032Physics Letters, Section A: General, Atomic and Solid State Physics, v. 380, n. 21, p. 1830-1838, 2016.0375-9601http://hdl.handle.net/11449/16851710.1016/j.physleta.2016.03.0322-s2.0-849619905812-s2.0-84961990581.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysics Letters, Section A: General, Atomic and Solid State Physics1511810,595info:eu-repo/semantics/openAccess2023-11-22T06:11:36Zoai:repositorio.unesp.br:11449/168517Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:23:40.508097Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Statistical investigation and thermal properties for a 1-D impact system with dissipation |
title |
Statistical investigation and thermal properties for a 1-D impact system with dissipation |
spellingShingle |
Statistical investigation and thermal properties for a 1-D impact system with dissipation Díaz I., Gabriel [UNESP] Chaos Critical exponents Scaling law Thermodynamics |
title_short |
Statistical investigation and thermal properties for a 1-D impact system with dissipation |
title_full |
Statistical investigation and thermal properties for a 1-D impact system with dissipation |
title_fullStr |
Statistical investigation and thermal properties for a 1-D impact system with dissipation |
title_full_unstemmed |
Statistical investigation and thermal properties for a 1-D impact system with dissipation |
title_sort |
Statistical investigation and thermal properties for a 1-D impact system with dissipation |
author |
Díaz I., Gabriel [UNESP] |
author_facet |
Díaz I., Gabriel [UNESP] Livorati, André L.P. [UNESP] Leonel, Edson D. [UNESP] |
author_role |
author |
author2 |
Livorati, André L.P. [UNESP] Leonel, Edson D. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Díaz I., Gabriel [UNESP] Livorati, André L.P. [UNESP] Leonel, Edson D. [UNESP] |
dc.subject.por.fl_str_mv |
Chaos Critical exponents Scaling law Thermodynamics |
topic |
Chaos Critical exponents Scaling law Thermodynamics |
description |
The behavior of the average velocity, its deviation and average squared velocity are characterized using three techniques for a 1-D dissipative impact system. The system - a particle, or an ensemble of non-interacting particles, moving in a constant gravitation field and colliding with a varying platform - is described by a nonlinear mapping. The average squared velocity allows to describe the temperature for an ensemble of particles as a function of the parameters using: (i) straightforward numerical simulations; (ii) analytically from the dynamical equations; (iii) using the probability distribution function. Comparing analytical and numerical results for the three techniques, one can check the robustness of the developed formalism, where we are able to estimate numerical values for the statistical variables, without doing extensive numerical simulations. Also, extension to other dynamical systems is immediate, including time dependent billiards. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01 2018-12-11T16:41:37Z 2018-12-11T16:41:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.physleta.2016.03.032 Physics Letters, Section A: General, Atomic and Solid State Physics, v. 380, n. 21, p. 1830-1838, 2016. 0375-9601 http://hdl.handle.net/11449/168517 10.1016/j.physleta.2016.03.032 2-s2.0-84961990581 2-s2.0-84961990581.pdf |
url |
http://dx.doi.org/10.1016/j.physleta.2016.03.032 http://hdl.handle.net/11449/168517 |
identifier_str_mv |
Physics Letters, Section A: General, Atomic and Solid State Physics, v. 380, n. 21, p. 1830-1838, 2016. 0375-9601 10.1016/j.physleta.2016.03.032 2-s2.0-84961990581 2-s2.0-84961990581.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physics Letters, Section A: General, Atomic and Solid State Physics 151181 0,595 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1830-1838 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128926950621184 |