Defining universality classes for three different local bifurcations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.cnsns.2016.04.008 http://hdl.handle.net/11449/168586 |
Resumo: | The convergence to the fixed point at a bifurcation and near it is characterized via scaling formalism for three different types of local bifurcations of fixed points in differential equations, namely: (i) saddle-node; (ii) transcritical; and (iii) supercritical pitchfork. At the bifurcation, the convergence is described by a homogeneous function with three critical exponents α, β and z. A scaling law is derived hence relating the three exponents. Near the bifurcation the evolution towards the fixed point is given by an exponential function whose relaxation time is marked by a power law of the distance of the bifurcation point with an exponent δ. The four exponents α, β, z and δ can be used to defined classes of universality for the local bifurcations of fixed points in differential equations. |
id |
UNSP_fe0df733e237624962543bc24454149d |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/168586 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Defining universality classes for three different local bifurcationsCritical exponentsLocal bifurcationsScaling lawThe convergence to the fixed point at a bifurcation and near it is characterized via scaling formalism for three different types of local bifurcations of fixed points in differential equations, namely: (i) saddle-node; (ii) transcritical; and (iii) supercritical pitchfork. At the bifurcation, the convergence is described by a homogeneous function with three critical exponents α, β and z. A scaling law is derived hence relating the three exponents. Near the bifurcation the evolution towards the fixed point is given by an exponential function whose relaxation time is marked by a power law of the distance of the bifurcation point with an exponent δ. The four exponents α, β, z and δ can be used to defined classes of universality for the local bifurcations of fixed points in differential equations.Departamento de Física UNESP - Universidade Estadual Paulista, Av. 24A, 1515 Bela VistaAbdus Salam International Center for Theoretical Physics, Strada Costiera 11Departamento de Física UNESP - Universidade Estadual Paulista, Av. 24A, 1515 Bela VistaUniversidade Estadual Paulista (Unesp)Abdus Salam International Center for Theoretical PhysicsLeonel, Edson D. [UNESP]2018-12-11T16:42:03Z2018-12-11T16:42:03Z2016-10-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article520-528application/pdfhttp://dx.doi.org/10.1016/j.cnsns.2016.04.008Communications in Nonlinear Science and Numerical Simulation, v. 39, p. 520-528.1007-5704http://hdl.handle.net/11449/16858610.1016/j.cnsns.2016.04.0082-s2.0-849639560142-s2.0-84963956014.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengCommunications in Nonlinear Science and Numerical Simulation1,372info:eu-repo/semantics/openAccess2024-01-17T06:29:58Zoai:repositorio.unesp.br:11449/168586Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:18:35.742305Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Defining universality classes for three different local bifurcations |
title |
Defining universality classes for three different local bifurcations |
spellingShingle |
Defining universality classes for three different local bifurcations Leonel, Edson D. [UNESP] Critical exponents Local bifurcations Scaling law |
title_short |
Defining universality classes for three different local bifurcations |
title_full |
Defining universality classes for three different local bifurcations |
title_fullStr |
Defining universality classes for three different local bifurcations |
title_full_unstemmed |
Defining universality classes for three different local bifurcations |
title_sort |
Defining universality classes for three different local bifurcations |
author |
Leonel, Edson D. [UNESP] |
author_facet |
Leonel, Edson D. [UNESP] |
author_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Abdus Salam International Center for Theoretical Physics |
dc.contributor.author.fl_str_mv |
Leonel, Edson D. [UNESP] |
dc.subject.por.fl_str_mv |
Critical exponents Local bifurcations Scaling law |
topic |
Critical exponents Local bifurcations Scaling law |
description |
The convergence to the fixed point at a bifurcation and near it is characterized via scaling formalism for three different types of local bifurcations of fixed points in differential equations, namely: (i) saddle-node; (ii) transcritical; and (iii) supercritical pitchfork. At the bifurcation, the convergence is described by a homogeneous function with three critical exponents α, β and z. A scaling law is derived hence relating the three exponents. Near the bifurcation the evolution towards the fixed point is given by an exponential function whose relaxation time is marked by a power law of the distance of the bifurcation point with an exponent δ. The four exponents α, β, z and δ can be used to defined classes of universality for the local bifurcations of fixed points in differential equations. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10-01 2018-12-11T16:42:03Z 2018-12-11T16:42:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.cnsns.2016.04.008 Communications in Nonlinear Science and Numerical Simulation, v. 39, p. 520-528. 1007-5704 http://hdl.handle.net/11449/168586 10.1016/j.cnsns.2016.04.008 2-s2.0-84963956014 2-s2.0-84963956014.pdf |
url |
http://dx.doi.org/10.1016/j.cnsns.2016.04.008 http://hdl.handle.net/11449/168586 |
identifier_str_mv |
Communications in Nonlinear Science and Numerical Simulation, v. 39, p. 520-528. 1007-5704 10.1016/j.cnsns.2016.04.008 2-s2.0-84963956014 2-s2.0-84963956014.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Communications in Nonlinear Science and Numerical Simulation 1,372 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
520-528 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129505959608320 |