Unsupervised Manifold Learning for Video Genre Retrieval
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/184746 |
Resumo: | This paper investigates the perspective of exploiting pairwise similarities to improve the performance of visual features for video genre retrieval. We employ manifold learning based on the reciprocal neighborhood and on the authority of ranked lists to improve the retrieval of videos considering their genre. A comparative analysis of different visual features is conducted and discussed. We experimentally show in the dataset of 14,838 videos from the MediaEval benchmark that we can achieve considerable improvements in results. In addition, we also evaluate how the late fusion of different visual features using the same manifold learning scheme can improve the retrieval results. |
id |
UNSP_82181aee179834b8cfc2ae70e7e92dc3 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/184746 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Unsupervised Manifold Learning for Video Genre Retrievalvideo genre retrievalranking methodsmanifold learningThis paper investigates the perspective of exploiting pairwise similarities to improve the performance of visual features for video genre retrieval. We employ manifold learning based on the reciprocal neighborhood and on the authority of ranked lists to improve the retrieval of videos considering their genre. A comparative analysis of different visual features is conducted and discussed. We experimentally show in the dataset of 14,838 videos from the MediaEval benchmark that we can achieve considerable improvements in results. In addition, we also evaluate how the late fusion of different visual features using the same manifold learning scheme can improve the retrieval results.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fed Univ Sao Paulo UNIFESP, Inst Sci & Technol, BR-12231280 Sao Jose Dos Campos, SP, BrazilSao Paulo State Univ, Dept Stat, Appl Math & Computat, BR-13506900 Rio Claro, SP, BrazilAdv Technol SAMSUNG Res Inst, BR-13097160 Campinas, SP, BrazilSao Paulo State Univ, Dept Stat, Appl Math & Computat, BR-13506900 Rio Claro, SP, BrazilFAPESP: 2013/08645-0SpringerUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Adv Technol SAMSUNG Res InstAlmeida, JurandyPedronette, Daniel C. G. [UNESP]Penatti, Otavio A. B.BayroCorrochano, E.Hancock, E.2019-10-04T12:29:42Z2019-10-04T12:29:42Z2014-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject604-612Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014. Berlin: Springer-verlag Berlin, v. 8827, p. 604-612, 2014.0302-9743http://hdl.handle.net/11449/184746WOS:000346407400074Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProgress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014info:eu-repo/semantics/openAccess2021-10-22T21:10:06Zoai:repositorio.unesp.br:11449/184746Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:57:39.027563Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Unsupervised Manifold Learning for Video Genre Retrieval |
title |
Unsupervised Manifold Learning for Video Genre Retrieval |
spellingShingle |
Unsupervised Manifold Learning for Video Genre Retrieval Almeida, Jurandy video genre retrieval ranking methods manifold learning |
title_short |
Unsupervised Manifold Learning for Video Genre Retrieval |
title_full |
Unsupervised Manifold Learning for Video Genre Retrieval |
title_fullStr |
Unsupervised Manifold Learning for Video Genre Retrieval |
title_full_unstemmed |
Unsupervised Manifold Learning for Video Genre Retrieval |
title_sort |
Unsupervised Manifold Learning for Video Genre Retrieval |
author |
Almeida, Jurandy |
author_facet |
Almeida, Jurandy Pedronette, Daniel C. G. [UNESP] Penatti, Otavio A. B. BayroCorrochano, E. Hancock, E. |
author_role |
author |
author2 |
Pedronette, Daniel C. G. [UNESP] Penatti, Otavio A. B. BayroCorrochano, E. Hancock, E. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) Adv Technol SAMSUNG Res Inst |
dc.contributor.author.fl_str_mv |
Almeida, Jurandy Pedronette, Daniel C. G. [UNESP] Penatti, Otavio A. B. BayroCorrochano, E. Hancock, E. |
dc.subject.por.fl_str_mv |
video genre retrieval ranking methods manifold learning |
topic |
video genre retrieval ranking methods manifold learning |
description |
This paper investigates the perspective of exploiting pairwise similarities to improve the performance of visual features for video genre retrieval. We employ manifold learning based on the reciprocal neighborhood and on the authority of ranked lists to improve the retrieval of videos considering their genre. A comparative analysis of different visual features is conducted and discussed. We experimentally show in the dataset of 14,838 videos from the MediaEval benchmark that we can achieve considerable improvements in results. In addition, we also evaluate how the late fusion of different visual features using the same manifold learning scheme can improve the retrieval results. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-01 2019-10-04T12:29:42Z 2019-10-04T12:29:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014. Berlin: Springer-verlag Berlin, v. 8827, p. 604-612, 2014. 0302-9743 http://hdl.handle.net/11449/184746 WOS:000346407400074 |
identifier_str_mv |
Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014. Berlin: Springer-verlag Berlin, v. 8827, p. 604-612, 2014. 0302-9743 WOS:000346407400074 |
url |
http://hdl.handle.net/11449/184746 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
604-612 |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128441772408832 |