Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/TIP.2019.2920526 http://hdl.handle.net/11449/186137 |
Resumo: | Accurately ranking images and multimedia objects are of paramount relevance in many retrieval and learning tasks. Manifold learning methods have been investigated for ranking mainly due to their capacity of taking into account the intrinsic global manifold structure. In this paper, a novel manifold ranking algorithm is proposed based on the hypergraphs for unsupervised multimedia retrieval tasks. Different from traditional graph-based approaches, which represent only pairwise relationships, hypergraphs are capable of modeling similarity relationships among a set of objects. The proposed approach uses the hyperedges for constructing a contextual representation of data samples and exploits the encoded information for deriving a more effective similarity function. An extensive experimental evaluation was conducted on nine public datasets including diverse retrieval scenarios and multimedia content. Experimental results demonstrate that high effectiveness gains can be obtained in comparison with the state-of-the-art methods. |
id |
UNSP_d8b8a9ca572897f30f6a570ec6985b55 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/186137 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold RankingMultimediaretrievalrankingunsupervisedmanifoldhypergraphAccurately ranking images and multimedia objects are of paramount relevance in many retrieval and learning tasks. Manifold learning methods have been investigated for ranking mainly due to their capacity of taking into account the intrinsic global manifold structure. In this paper, a novel manifold ranking algorithm is proposed based on the hypergraphs for unsupervised multimedia retrieval tasks. Different from traditional graph-based approaches, which represent only pairwise relationships, hypergraphs are capable of modeling similarity relationships among a set of objects. The proposed approach uses the hyperedges for constructing a contextual representation of data samples and exploits the encoded information for deriving a more effective similarity function. An extensive experimental evaluation was conducted on nine public datasets including diverse retrieval scenarios and multimedia content. Experimental results demonstrate that high effectiveness gains can be obtained in comparison with the state-of-the-art methods.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)State Univ Sao Paulo, Dept Stat Appl Maths & Comp, BR-13506900 Rio Claro, BrazilUniv Fed Sao Paulo, Inst Sci & Technol, BR-12231280 Sao Jose Dos Campos, BrazilUniv Estadual Campinas, Inst Comp, RECOD Lab, BR-13083852 Campinas, SP, BrazilState Univ Sao Paulo, Dept Stat Appl Maths & Comp, BR-13506900 Rio Claro, BrazilFAPESP: 2018/15597-6FAPESP: 2017/25908-6FAPESP: 2017/02091-4FAPESP: 2017/20945-0FAPESP: 2016/06441-7FAPESP: 2015/24494-8FAPESP: 2016/50250-1FAPESP: 2013/50155-0FAPESP: 2014/12236-1FAPESP: 2014/50715-9CNPq: 423228/2016-1CNPq: 307560/2016-3CNPq: 308194/2017-9CNPq: 313122/2017-2CAPES: 001Ieee-inst Electrical Electronics Engineers IncUniversidade Estadual Paulista (Unesp)Universidade Federal de São Paulo (UNIFESP)Universidade Estadual de Campinas (UNICAMP)Guimaraes Pedronette, Daniel Carlos [UNESP]Valem, Lucas Pascotti [UNESP]Almeida, JurandyTones, Ricardo da S.2019-10-04T12:41:35Z2019-10-04T12:41:35Z2019-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article5824-5838http://dx.doi.org/10.1109/TIP.2019.2920526Ieee Transactions On Image Processing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 28, n. 12, p. 5824-5838, 2019.1057-7149http://hdl.handle.net/11449/18613710.1109/TIP.2019.2920526WOS:000484306000006Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIeee Transactions On Image Processinginfo:eu-repo/semantics/openAccess2024-11-28T12:53:45Zoai:repositorio.unesp.br:11449/186137Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-28T12:53:45Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking |
title |
Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking |
spellingShingle |
Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking Guimaraes Pedronette, Daniel Carlos [UNESP] Multimedia retrieval ranking unsupervised manifold hypergraph |
title_short |
Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking |
title_full |
Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking |
title_fullStr |
Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking |
title_full_unstemmed |
Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking |
title_sort |
Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking |
author |
Guimaraes Pedronette, Daniel Carlos [UNESP] |
author_facet |
Guimaraes Pedronette, Daniel Carlos [UNESP] Valem, Lucas Pascotti [UNESP] Almeida, Jurandy Tones, Ricardo da S. |
author_role |
author |
author2 |
Valem, Lucas Pascotti [UNESP] Almeida, Jurandy Tones, Ricardo da S. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal de São Paulo (UNIFESP) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Guimaraes Pedronette, Daniel Carlos [UNESP] Valem, Lucas Pascotti [UNESP] Almeida, Jurandy Tones, Ricardo da S. |
dc.subject.por.fl_str_mv |
Multimedia retrieval ranking unsupervised manifold hypergraph |
topic |
Multimedia retrieval ranking unsupervised manifold hypergraph |
description |
Accurately ranking images and multimedia objects are of paramount relevance in many retrieval and learning tasks. Manifold learning methods have been investigated for ranking mainly due to their capacity of taking into account the intrinsic global manifold structure. In this paper, a novel manifold ranking algorithm is proposed based on the hypergraphs for unsupervised multimedia retrieval tasks. Different from traditional graph-based approaches, which represent only pairwise relationships, hypergraphs are capable of modeling similarity relationships among a set of objects. The proposed approach uses the hyperedges for constructing a contextual representation of data samples and exploits the encoded information for deriving a more effective similarity function. An extensive experimental evaluation was conducted on nine public datasets including diverse retrieval scenarios and multimedia content. Experimental results demonstrate that high effectiveness gains can be obtained in comparison with the state-of-the-art methods. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-04T12:41:35Z 2019-10-04T12:41:35Z 2019-12-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/TIP.2019.2920526 Ieee Transactions On Image Processing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 28, n. 12, p. 5824-5838, 2019. 1057-7149 http://hdl.handle.net/11449/186137 10.1109/TIP.2019.2920526 WOS:000484306000006 |
url |
http://dx.doi.org/10.1109/TIP.2019.2920526 http://hdl.handle.net/11449/186137 |
identifier_str_mv |
Ieee Transactions On Image Processing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 28, n. 12, p. 5824-5838, 2019. 1057-7149 10.1109/TIP.2019.2920526 WOS:000484306000006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ieee Transactions On Image Processing |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
5824-5838 |
dc.publisher.none.fl_str_mv |
Ieee-inst Electrical Electronics Engineers Inc |
publisher.none.fl_str_mv |
Ieee-inst Electrical Electronics Engineers Inc |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1826304422782697472 |