Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking

Detalhes bibliográficos
Autor(a) principal: Guimaraes Pedronette, Daniel Carlos [UNESP]
Data de Publicação: 2019
Outros Autores: Valem, Lucas Pascotti [UNESP], Almeida, Jurandy, Tones, Ricardo da S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/TIP.2019.2920526
http://hdl.handle.net/11449/186137
Resumo: Accurately ranking images and multimedia objects are of paramount relevance in many retrieval and learning tasks. Manifold learning methods have been investigated for ranking mainly due to their capacity of taking into account the intrinsic global manifold structure. In this paper, a novel manifold ranking algorithm is proposed based on the hypergraphs for unsupervised multimedia retrieval tasks. Different from traditional graph-based approaches, which represent only pairwise relationships, hypergraphs are capable of modeling similarity relationships among a set of objects. The proposed approach uses the hyperedges for constructing a contextual representation of data samples and exploits the encoded information for deriving a more effective similarity function. An extensive experimental evaluation was conducted on nine public datasets including diverse retrieval scenarios and multimedia content. Experimental results demonstrate that high effectiveness gains can be obtained in comparison with the state-of-the-art methods.
id UNSP_d8b8a9ca572897f30f6a570ec6985b55
oai_identifier_str oai:repositorio.unesp.br:11449/186137
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold RankingMultimediaretrievalrankingunsupervisedmanifoldhypergraphAccurately ranking images and multimedia objects are of paramount relevance in many retrieval and learning tasks. Manifold learning methods have been investigated for ranking mainly due to their capacity of taking into account the intrinsic global manifold structure. In this paper, a novel manifold ranking algorithm is proposed based on the hypergraphs for unsupervised multimedia retrieval tasks. Different from traditional graph-based approaches, which represent only pairwise relationships, hypergraphs are capable of modeling similarity relationships among a set of objects. The proposed approach uses the hyperedges for constructing a contextual representation of data samples and exploits the encoded information for deriving a more effective similarity function. An extensive experimental evaluation was conducted on nine public datasets including diverse retrieval scenarios and multimedia content. Experimental results demonstrate that high effectiveness gains can be obtained in comparison with the state-of-the-art methods.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)State Univ Sao Paulo, Dept Stat Appl Maths & Comp, BR-13506900 Rio Claro, BrazilUniv Fed Sao Paulo, Inst Sci & Technol, BR-12231280 Sao Jose Dos Campos, BrazilUniv Estadual Campinas, Inst Comp, RECOD Lab, BR-13083852 Campinas, SP, BrazilState Univ Sao Paulo, Dept Stat Appl Maths & Comp, BR-13506900 Rio Claro, BrazilFAPESP: 2018/15597-6FAPESP: 2017/25908-6FAPESP: 2017/02091-4FAPESP: 2017/20945-0FAPESP: 2016/06441-7FAPESP: 2015/24494-8FAPESP: 2016/50250-1FAPESP: 2013/50155-0FAPESP: 2014/12236-1FAPESP: 2014/50715-9CNPq: 423228/2016-1CNPq: 307560/2016-3CNPq: 308194/2017-9CNPq: 313122/2017-2CAPES: 001Ieee-inst Electrical Electronics Engineers IncUniversidade Estadual Paulista (Unesp)Universidade Federal de São Paulo (UNIFESP)Universidade Estadual de Campinas (UNICAMP)Guimaraes Pedronette, Daniel Carlos [UNESP]Valem, Lucas Pascotti [UNESP]Almeida, JurandyTones, Ricardo da S.2019-10-04T12:41:35Z2019-10-04T12:41:35Z2019-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article5824-5838http://dx.doi.org/10.1109/TIP.2019.2920526Ieee Transactions On Image Processing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 28, n. 12, p. 5824-5838, 2019.1057-7149http://hdl.handle.net/11449/18613710.1109/TIP.2019.2920526WOS:000484306000006Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIeee Transactions On Image Processinginfo:eu-repo/semantics/openAccess2024-11-28T12:53:45Zoai:repositorio.unesp.br:11449/186137Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-28T12:53:45Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking
title Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking
spellingShingle Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking
Guimaraes Pedronette, Daniel Carlos [UNESP]
Multimedia
retrieval
ranking
unsupervised
manifold
hypergraph
title_short Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking
title_full Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking
title_fullStr Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking
title_full_unstemmed Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking
title_sort Multimedia Retrieval Through Unsupervised Hypergraph-Based Manifold Ranking
author Guimaraes Pedronette, Daniel Carlos [UNESP]
author_facet Guimaraes Pedronette, Daniel Carlos [UNESP]
Valem, Lucas Pascotti [UNESP]
Almeida, Jurandy
Tones, Ricardo da S.
author_role author
author2 Valem, Lucas Pascotti [UNESP]
Almeida, Jurandy
Tones, Ricardo da S.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de São Paulo (UNIFESP)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Guimaraes Pedronette, Daniel Carlos [UNESP]
Valem, Lucas Pascotti [UNESP]
Almeida, Jurandy
Tones, Ricardo da S.
dc.subject.por.fl_str_mv Multimedia
retrieval
ranking
unsupervised
manifold
hypergraph
topic Multimedia
retrieval
ranking
unsupervised
manifold
hypergraph
description Accurately ranking images and multimedia objects are of paramount relevance in many retrieval and learning tasks. Manifold learning methods have been investigated for ranking mainly due to their capacity of taking into account the intrinsic global manifold structure. In this paper, a novel manifold ranking algorithm is proposed based on the hypergraphs for unsupervised multimedia retrieval tasks. Different from traditional graph-based approaches, which represent only pairwise relationships, hypergraphs are capable of modeling similarity relationships among a set of objects. The proposed approach uses the hyperedges for constructing a contextual representation of data samples and exploits the encoded information for deriving a more effective similarity function. An extensive experimental evaluation was conducted on nine public datasets including diverse retrieval scenarios and multimedia content. Experimental results demonstrate that high effectiveness gains can be obtained in comparison with the state-of-the-art methods.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-04T12:41:35Z
2019-10-04T12:41:35Z
2019-12-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/TIP.2019.2920526
Ieee Transactions On Image Processing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 28, n. 12, p. 5824-5838, 2019.
1057-7149
http://hdl.handle.net/11449/186137
10.1109/TIP.2019.2920526
WOS:000484306000006
url http://dx.doi.org/10.1109/TIP.2019.2920526
http://hdl.handle.net/11449/186137
identifier_str_mv Ieee Transactions On Image Processing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 28, n. 12, p. 5824-5838, 2019.
1057-7149
10.1109/TIP.2019.2920526
WOS:000484306000006
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ieee Transactions On Image Processing
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 5824-5838
dc.publisher.none.fl_str_mv Ieee-inst Electrical Electronics Engineers Inc
publisher.none.fl_str_mv Ieee-inst Electrical Electronics Engineers Inc
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1826304422782697472