Quantum-mechanical solution for the double oscillator in a box
Autor(a) principal: | |
---|---|
Data de Publicação: | 1981 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/BF02721254 http://hdl.handle.net/11449/231130 |
Resumo: | The quantum-mechanical problem of the double oscillator in a box is solved by diagonalizing the matrix of the Hamiltonian on the basis of the wave functions for the free particle in the box. Perturbative and asymptotic solutions, valid for small- and large-size boxes, respectively, are also obtained. An interpolation between the approximate solutions leads to the construction of Padé-approximant forms for the energy levels that are valid for boxes of any size. A comparison between the exact and the approximate solutions is made in order to ascertain the accuracy and range of validity of each one. Special attention is paid to the lowest levels. © 1981 Società Italiana di Fisica. |
id |
UNSP_82bc3995572ef84e32baa9d86396d9fc |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/231130 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Quantum-mechanical solution for the double oscillator in a boxThe quantum-mechanical problem of the double oscillator in a box is solved by diagonalizing the matrix of the Hamiltonian on the basis of the wave functions for the free particle in the box. Perturbative and asymptotic solutions, valid for small- and large-size boxes, respectively, are also obtained. An interpolation between the approximate solutions leads to the construction of Padé-approximant forms for the energy levels that are valid for boxes of any size. A comparison between the exact and the approximate solutions is made in order to ascertain the accuracy and range of validity of each one. Special attention is paid to the lowest levels. © 1981 Società Italiana di Fisica.Instituto de Física Teórica, Rua Pamplona 145, São Paulo, 01405, SPInstituto de Física TeóricaAguilera-Navarro, V. C.Iwamoto, H.Koo, E.LeyZimerman, A. H.2022-04-29T08:43:46Z2022-04-29T08:43:46Z1981-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article91-129http://dx.doi.org/10.1007/BF02721254Il Nuovo Cimento B Series 11, v. 62, n. 1, p. 91-129, 1981.0369-35541826-9877http://hdl.handle.net/11449/23113010.1007/BF027212542-s2.0-51249179523Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIl Nuovo Cimento B Series 11info:eu-repo/semantics/openAccess2022-04-29T08:43:46Zoai:repositorio.unesp.br:11449/231130Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:23:37.671661Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Quantum-mechanical solution for the double oscillator in a box |
title |
Quantum-mechanical solution for the double oscillator in a box |
spellingShingle |
Quantum-mechanical solution for the double oscillator in a box Aguilera-Navarro, V. C. |
title_short |
Quantum-mechanical solution for the double oscillator in a box |
title_full |
Quantum-mechanical solution for the double oscillator in a box |
title_fullStr |
Quantum-mechanical solution for the double oscillator in a box |
title_full_unstemmed |
Quantum-mechanical solution for the double oscillator in a box |
title_sort |
Quantum-mechanical solution for the double oscillator in a box |
author |
Aguilera-Navarro, V. C. |
author_facet |
Aguilera-Navarro, V. C. Iwamoto, H. Koo, E.Ley Zimerman, A. H. |
author_role |
author |
author2 |
Iwamoto, H. Koo, E.Ley Zimerman, A. H. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Instituto de Física Teórica |
dc.contributor.author.fl_str_mv |
Aguilera-Navarro, V. C. Iwamoto, H. Koo, E.Ley Zimerman, A. H. |
description |
The quantum-mechanical problem of the double oscillator in a box is solved by diagonalizing the matrix of the Hamiltonian on the basis of the wave functions for the free particle in the box. Perturbative and asymptotic solutions, valid for small- and large-size boxes, respectively, are also obtained. An interpolation between the approximate solutions leads to the construction of Padé-approximant forms for the energy levels that are valid for boxes of any size. A comparison between the exact and the approximate solutions is made in order to ascertain the accuracy and range of validity of each one. Special attention is paid to the lowest levels. © 1981 Società Italiana di Fisica. |
publishDate |
1981 |
dc.date.none.fl_str_mv |
1981-03-01 2022-04-29T08:43:46Z 2022-04-29T08:43:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/BF02721254 Il Nuovo Cimento B Series 11, v. 62, n. 1, p. 91-129, 1981. 0369-3554 1826-9877 http://hdl.handle.net/11449/231130 10.1007/BF02721254 2-s2.0-51249179523 |
url |
http://dx.doi.org/10.1007/BF02721254 http://hdl.handle.net/11449/231130 |
identifier_str_mv |
Il Nuovo Cimento B Series 11, v. 62, n. 1, p. 91-129, 1981. 0369-3554 1826-9877 10.1007/BF02721254 2-s2.0-51249179523 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Il Nuovo Cimento B Series 11 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
91-129 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128507511832576 |