Quantum quadratic-attractive plus quartic repulsive potential in a box

Detalhes bibliográficos
Autor(a) principal: Aguilera-Navarro, V. C.
Data de Publicação: 1982
Outros Autores: Koo, E. L., Zimerman, A. H., Iwamoto, H.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1088/0305-4470/15/1/016
http://hdl.handle.net/11449/231061
Resumo: The solution of the Schrodinger equation for the two well oscillator in a symmetric box is formulated exactly, and high-accuracy numerical results are obtained for the lowest states. Perturbative solutions for boxes whose walls are (i) fairly close to each other, (ii) in the vicinity of the inflection points of the potential, (iii) at the position of the minima of the potential, and (iv) very far from each other are also obtained and compared with the exact ones.
id UNSP_97e325f59002f32a6eeb7246a0af6415
oai_identifier_str oai:repositorio.unesp.br:11449/231061
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Quantum quadratic-attractive plus quartic repulsive potential in a boxThe solution of the Schrodinger equation for the two well oscillator in a symmetric box is formulated exactly, and high-accuracy numerical results are obtained for the lowest states. Perturbative solutions for boxes whose walls are (i) fairly close to each other, (ii) in the vicinity of the inflection points of the potential, (iii) at the position of the minima of the potential, and (iv) very far from each other are also obtained and compared with the exact ones.Inst. de Fisica Teorica, Rua Pamplona, Sao PauloInst. de Fisica TeoricaAguilera-Navarro, V. C.Koo, E. L.Zimerman, A. H.Iwamoto, H.2022-04-29T08:43:24Z2022-04-29T08:43:24Z1982-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article73-83http://dx.doi.org/10.1088/0305-4470/15/1/016Journal of Physics A: Mathematical and General, v. 15, n. 1, p. 73-83, 1982.0305-4470http://hdl.handle.net/11449/23106110.1088/0305-4470/15/1/0162-s2.0-36149047765Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Physics A: Mathematical and Generalinfo:eu-repo/semantics/openAccess2022-04-29T08:43:24Zoai:repositorio.unesp.br:11449/231061Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:38:09.977677Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Quantum quadratic-attractive plus quartic repulsive potential in a box
title Quantum quadratic-attractive plus quartic repulsive potential in a box
spellingShingle Quantum quadratic-attractive plus quartic repulsive potential in a box
Aguilera-Navarro, V. C.
title_short Quantum quadratic-attractive plus quartic repulsive potential in a box
title_full Quantum quadratic-attractive plus quartic repulsive potential in a box
title_fullStr Quantum quadratic-attractive plus quartic repulsive potential in a box
title_full_unstemmed Quantum quadratic-attractive plus quartic repulsive potential in a box
title_sort Quantum quadratic-attractive plus quartic repulsive potential in a box
author Aguilera-Navarro, V. C.
author_facet Aguilera-Navarro, V. C.
Koo, E. L.
Zimerman, A. H.
Iwamoto, H.
author_role author
author2 Koo, E. L.
Zimerman, A. H.
Iwamoto, H.
author2_role author
author
author
dc.contributor.none.fl_str_mv Inst. de Fisica Teorica
dc.contributor.author.fl_str_mv Aguilera-Navarro, V. C.
Koo, E. L.
Zimerman, A. H.
Iwamoto, H.
description The solution of the Schrodinger equation for the two well oscillator in a symmetric box is formulated exactly, and high-accuracy numerical results are obtained for the lowest states. Perturbative solutions for boxes whose walls are (i) fairly close to each other, (ii) in the vicinity of the inflection points of the potential, (iii) at the position of the minima of the potential, and (iv) very far from each other are also obtained and compared with the exact ones.
publishDate 1982
dc.date.none.fl_str_mv 1982-12-01
2022-04-29T08:43:24Z
2022-04-29T08:43:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1088/0305-4470/15/1/016
Journal of Physics A: Mathematical and General, v. 15, n. 1, p. 73-83, 1982.
0305-4470
http://hdl.handle.net/11449/231061
10.1088/0305-4470/15/1/016
2-s2.0-36149047765
url http://dx.doi.org/10.1088/0305-4470/15/1/016
http://hdl.handle.net/11449/231061
identifier_str_mv Journal of Physics A: Mathematical and General, v. 15, n. 1, p. 73-83, 1982.
0305-4470
10.1088/0305-4470/15/1/016
2-s2.0-36149047765
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Physics A: Mathematical and General
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 73-83
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128391351631872