Quality evaluation of intact açaí and juçara fruit by means of near infrared spectroscopy
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.postharvbio.2015.10.001 http://hdl.handle.net/11449/176886 |
Resumo: | The objective of this study was to report the robustness of partial least squares regression (PLSR) models developed using FT-NIR reflectance spectra obtained from intact açaí and juçara fruit. Mature fruit were collected over two years (6 populations of açaí and juçara, totalling 505 samples). Diffuse reflectance spectra were acquired (64 scans and spectral resolution of 8cm-1) using ~25 fruits per batch on a 90mm diameter glass dish in a single layer. Spectra were subject to several pre-processing procedures and two variable selection methods to develop the PLSR models. For total anthocyanin content (TAC) in açaí, a PLSR model developed using the wavelength range of 1606-1793nm, standard normal variate (SNV) and second derivative of Savitzky-Golay (SNV+d2A) achieved a bias corrected root mean square error (SEP) of 3.6gkg-1 and a R2p of 0.7 in predicting an external independent set, which was better than PLSR models for juçara (SEP of 3.7gkg-1, R2p of 0.5), and for both species combined (SEP of 5.7gkg-1, R2p of 0.5). For soluble solids content (SSC) in açaí the models developed using SNV+d2A spectra over the window of 1640-1738nm achieved a bias-corrected SEP of 2.9% and R2p of 0.8, similar to juçara (SEP of 1.1%, R2p of 0.9) and for both species combined (SEP of 2.3%, R2p of 0.8). The developed models can be used to sort açaí and juçara based on SSC and TAC into two grades (low and high contents). |
id |
UNSP_895334684e2b761d5746b82ad11fe0bd |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/176886 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Quality evaluation of intact açaí and juçara fruit by means of near infrared spectroscopyAnthocyaninClassificationEuterpe edulis MartEuterpe oleracea MartPartial least squares regressionSoluble solids contentThe objective of this study was to report the robustness of partial least squares regression (PLSR) models developed using FT-NIR reflectance spectra obtained from intact açaí and juçara fruit. Mature fruit were collected over two years (6 populations of açaí and juçara, totalling 505 samples). Diffuse reflectance spectra were acquired (64 scans and spectral resolution of 8cm-1) using ~25 fruits per batch on a 90mm diameter glass dish in a single layer. Spectra were subject to several pre-processing procedures and two variable selection methods to develop the PLSR models. For total anthocyanin content (TAC) in açaí, a PLSR model developed using the wavelength range of 1606-1793nm, standard normal variate (SNV) and second derivative of Savitzky-Golay (SNV+d2A) achieved a bias corrected root mean square error (SEP) of 3.6gkg-1 and a R2p of 0.7 in predicting an external independent set, which was better than PLSR models for juçara (SEP of 3.7gkg-1, R2p of 0.5), and for both species combined (SEP of 5.7gkg-1, R2p of 0.5). For soluble solids content (SSC) in açaí the models developed using SNV+d2A spectra over the window of 1640-1738nm achieved a bias-corrected SEP of 2.9% and R2p of 0.8, similar to juçara (SEP of 1.1%, R2p of 0.9) and for both species combined (SEP of 2.3%, R2p of 0.8). The developed models can be used to sort açaí and juçara based on SSC and TAC into two grades (low and high contents).Universidade Federal de Goiás (UFG), Escola de Agronomia (EA), Setor de Horticultura, Rodovia Goiânia/Nova Veneza, Km 0-Campus SamambaiaUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal (FCAV), Via de acesso Prof. Paulo Donato Castellane s/nUniversidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Departamento de Análises Clínicas, Toxicológicas e Bromatologicas, Av. do Café s/n-Campus Universitário da USPCentral Queensland University, Plant Sciences GroupUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal (FCAV), Via de acesso Prof. Paulo Donato Castellane s/nUniversidade Federal de Goiás (UFG)Universidade Estadual Paulista (Unesp)Universidade de São Paulo (USP)Central Queensland University, Plant Sciences GroupCunha Júnior, Luis CarlosTeixeira, Gustavo Henrique de Almeida [UNESP]Nardini, VivianiWalsh, Kerry Brian2018-12-11T17:22:56Z2018-12-11T17:22:56Z2016-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article64-74application/pdfhttp://dx.doi.org/10.1016/j.postharvbio.2015.10.001Postharvest Biology and Technology, v. 112, p. 64-74.0925-5214http://hdl.handle.net/11449/17688610.1016/j.postharvbio.2015.10.0012-s2.0-849451519712-s2.0-84945151971.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPostharvest Biology and Technology1,480info:eu-repo/semantics/openAccess2024-06-24T14:51:41Zoai:repositorio.unesp.br:11449/176886Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:56:25.042472Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Quality evaluation of intact açaí and juçara fruit by means of near infrared spectroscopy |
title |
Quality evaluation of intact açaí and juçara fruit by means of near infrared spectroscopy |
spellingShingle |
Quality evaluation of intact açaí and juçara fruit by means of near infrared spectroscopy Cunha Júnior, Luis Carlos Anthocyanin Classification Euterpe edulis Mart Euterpe oleracea Mart Partial least squares regression Soluble solids content |
title_short |
Quality evaluation of intact açaí and juçara fruit by means of near infrared spectroscopy |
title_full |
Quality evaluation of intact açaí and juçara fruit by means of near infrared spectroscopy |
title_fullStr |
Quality evaluation of intact açaí and juçara fruit by means of near infrared spectroscopy |
title_full_unstemmed |
Quality evaluation of intact açaí and juçara fruit by means of near infrared spectroscopy |
title_sort |
Quality evaluation of intact açaí and juçara fruit by means of near infrared spectroscopy |
author |
Cunha Júnior, Luis Carlos |
author_facet |
Cunha Júnior, Luis Carlos Teixeira, Gustavo Henrique de Almeida [UNESP] Nardini, Viviani Walsh, Kerry Brian |
author_role |
author |
author2 |
Teixeira, Gustavo Henrique de Almeida [UNESP] Nardini, Viviani Walsh, Kerry Brian |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de Goiás (UFG) Universidade Estadual Paulista (Unesp) Universidade de São Paulo (USP) Central Queensland University, Plant Sciences Group |
dc.contributor.author.fl_str_mv |
Cunha Júnior, Luis Carlos Teixeira, Gustavo Henrique de Almeida [UNESP] Nardini, Viviani Walsh, Kerry Brian |
dc.subject.por.fl_str_mv |
Anthocyanin Classification Euterpe edulis Mart Euterpe oleracea Mart Partial least squares regression Soluble solids content |
topic |
Anthocyanin Classification Euterpe edulis Mart Euterpe oleracea Mart Partial least squares regression Soluble solids content |
description |
The objective of this study was to report the robustness of partial least squares regression (PLSR) models developed using FT-NIR reflectance spectra obtained from intact açaí and juçara fruit. Mature fruit were collected over two years (6 populations of açaí and juçara, totalling 505 samples). Diffuse reflectance spectra were acquired (64 scans and spectral resolution of 8cm-1) using ~25 fruits per batch on a 90mm diameter glass dish in a single layer. Spectra were subject to several pre-processing procedures and two variable selection methods to develop the PLSR models. For total anthocyanin content (TAC) in açaí, a PLSR model developed using the wavelength range of 1606-1793nm, standard normal variate (SNV) and second derivative of Savitzky-Golay (SNV+d2A) achieved a bias corrected root mean square error (SEP) of 3.6gkg-1 and a R2p of 0.7 in predicting an external independent set, which was better than PLSR models for juçara (SEP of 3.7gkg-1, R2p of 0.5), and for both species combined (SEP of 5.7gkg-1, R2p of 0.5). For soluble solids content (SSC) in açaí the models developed using SNV+d2A spectra over the window of 1640-1738nm achieved a bias-corrected SEP of 2.9% and R2p of 0.8, similar to juçara (SEP of 1.1%, R2p of 0.9) and for both species combined (SEP of 2.3%, R2p of 0.8). The developed models can be used to sort açaí and juçara based on SSC and TAC into two grades (low and high contents). |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-02-01 2018-12-11T17:22:56Z 2018-12-11T17:22:56Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.postharvbio.2015.10.001 Postharvest Biology and Technology, v. 112, p. 64-74. 0925-5214 http://hdl.handle.net/11449/176886 10.1016/j.postharvbio.2015.10.001 2-s2.0-84945151971 2-s2.0-84945151971.pdf |
url |
http://dx.doi.org/10.1016/j.postharvbio.2015.10.001 http://hdl.handle.net/11449/176886 |
identifier_str_mv |
Postharvest Biology and Technology, v. 112, p. 64-74. 0925-5214 10.1016/j.postharvbio.2015.10.001 2-s2.0-84945151971 2-s2.0-84945151971.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Postharvest Biology and Technology 1,480 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
64-74 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128877729415168 |