The matrix method for black hole quasinormal modes

Detalhes bibliográficos
Autor(a) principal: Lin, Kai
Data de Publicação: 2019
Outros Autores: Qian, Wei-Liang [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1088/1674-1137/43/3/035105
http://hdl.handle.net/11449/184408
Resumo: We provide a comprehensive survey of possible applications of the matrix method for black hole quasinormal modes. The proposed algorithm can generally be applied to various background metrics, and in particular, it accommodates both analytic and numerical forms of the tortoise coordinates, as well as black hole spacetimes. We give a detailed account of different types of black hole metrics, master equations, and corresponding boundary conditions. Besides, we argue that the method can readily be applied to cases where the master equation is a system of coupled equations. By adjusting the number of interpolation points, the present method provides a desirable degree of precision, in reasonable balance with its efficiency. The method is flexible and can easily be adopted to various distinct physical scenarios.
id UNSP_89c080b3a37888044c565433c177e97b
oai_identifier_str oai:repositorio.unesp.br:11449/184408
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling The matrix method for black hole quasinormal modesquasinormal modesblack hole spacetimematrix methodquasinormal frequencyWe provide a comprehensive survey of possible applications of the matrix method for black hole quasinormal modes. The proposed algorithm can generally be applied to various background metrics, and in particular, it accommodates both analytic and numerical forms of the tortoise coordinates, as well as black hole spacetimes. We give a detailed account of different types of black hole metrics, master equations, and corresponding boundary conditions. Besides, we argue that the method can readily be applied to cases where the master equation is a system of coupled equations. By adjusting the number of interpolation points, the present method provides a desirable degree of precision, in reasonable balance with its efficiency. The method is flexible and can easily be adopted to various distinct physical scenarios.National Natural Science Foundation of China (NNSFC)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)China Univ Geosci, Inst Geophys & Geomat, Hubei Subsurface Multiscale Imaging Key Lab, Wuhan 430074, Hubei, Peoples R ChinaUniv Sao Paulo, Escola Engn Lorena, BR-12602810 Lorena, SP, BrazilUniv Estadual Paulista, Fac Engn Guaratingueta, BR-12516410 Guaratingueta, SP, BrazilYangzhou Univ, Sch Phys Sci & Technol, Yangzhou 225002, Jiangsu, Peoples R ChinaUniv Estadual Paulista, Fac Engn Guaratingueta, BR-12516410 Guaratingueta, SP, BrazilNational Natural Science Foundation of China (NNSFC): 11805166Iop Publishing LtdChina Univ GeosciUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Yangzhou UnivLin, KaiQian, Wei-Liang [UNESP]2019-10-04T11:57:41Z2019-10-04T11:57:41Z2019-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article10http://dx.doi.org/10.1088/1674-1137/43/3/035105Chinese Physics C. Bristol: Iop Publishing Ltd, v. 43, n. 3, 10 p., 2019.1674-1137http://hdl.handle.net/11449/18440810.1088/1674-1137/43/3/035105WOS:000461073400014Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengChinese Physics Cinfo:eu-repo/semantics/openAccess2021-10-23T17:30:15Zoai:repositorio.unesp.br:11449/184408Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:34:41.143546Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv The matrix method for black hole quasinormal modes
title The matrix method for black hole quasinormal modes
spellingShingle The matrix method for black hole quasinormal modes
Lin, Kai
quasinormal modes
black hole spacetime
matrix method
quasinormal frequency
title_short The matrix method for black hole quasinormal modes
title_full The matrix method for black hole quasinormal modes
title_fullStr The matrix method for black hole quasinormal modes
title_full_unstemmed The matrix method for black hole quasinormal modes
title_sort The matrix method for black hole quasinormal modes
author Lin, Kai
author_facet Lin, Kai
Qian, Wei-Liang [UNESP]
author_role author
author2 Qian, Wei-Liang [UNESP]
author2_role author
dc.contributor.none.fl_str_mv China Univ Geosci
Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
Yangzhou Univ
dc.contributor.author.fl_str_mv Lin, Kai
Qian, Wei-Liang [UNESP]
dc.subject.por.fl_str_mv quasinormal modes
black hole spacetime
matrix method
quasinormal frequency
topic quasinormal modes
black hole spacetime
matrix method
quasinormal frequency
description We provide a comprehensive survey of possible applications of the matrix method for black hole quasinormal modes. The proposed algorithm can generally be applied to various background metrics, and in particular, it accommodates both analytic and numerical forms of the tortoise coordinates, as well as black hole spacetimes. We give a detailed account of different types of black hole metrics, master equations, and corresponding boundary conditions. Besides, we argue that the method can readily be applied to cases where the master equation is a system of coupled equations. By adjusting the number of interpolation points, the present method provides a desirable degree of precision, in reasonable balance with its efficiency. The method is flexible and can easily be adopted to various distinct physical scenarios.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-04T11:57:41Z
2019-10-04T11:57:41Z
2019-03-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1088/1674-1137/43/3/035105
Chinese Physics C. Bristol: Iop Publishing Ltd, v. 43, n. 3, 10 p., 2019.
1674-1137
http://hdl.handle.net/11449/184408
10.1088/1674-1137/43/3/035105
WOS:000461073400014
url http://dx.doi.org/10.1088/1674-1137/43/3/035105
http://hdl.handle.net/11449/184408
identifier_str_mv Chinese Physics C. Bristol: Iop Publishing Ltd, v. 43, n. 3, 10 p., 2019.
1674-1137
10.1088/1674-1137/43/3/035105
WOS:000461073400014
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Chinese Physics C
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 10
dc.publisher.none.fl_str_mv Iop Publishing Ltd
publisher.none.fl_str_mv Iop Publishing Ltd
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128951300653056