The matrix method for black hole quasinormal modes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1088/1674-1137/43/3/035105 http://hdl.handle.net/11449/184408 |
Resumo: | We provide a comprehensive survey of possible applications of the matrix method for black hole quasinormal modes. The proposed algorithm can generally be applied to various background metrics, and in particular, it accommodates both analytic and numerical forms of the tortoise coordinates, as well as black hole spacetimes. We give a detailed account of different types of black hole metrics, master equations, and corresponding boundary conditions. Besides, we argue that the method can readily be applied to cases where the master equation is a system of coupled equations. By adjusting the number of interpolation points, the present method provides a desirable degree of precision, in reasonable balance with its efficiency. The method is flexible and can easily be adopted to various distinct physical scenarios. |
id |
UNSP_89c080b3a37888044c565433c177e97b |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/184408 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
The matrix method for black hole quasinormal modesquasinormal modesblack hole spacetimematrix methodquasinormal frequencyWe provide a comprehensive survey of possible applications of the matrix method for black hole quasinormal modes. The proposed algorithm can generally be applied to various background metrics, and in particular, it accommodates both analytic and numerical forms of the tortoise coordinates, as well as black hole spacetimes. We give a detailed account of different types of black hole metrics, master equations, and corresponding boundary conditions. Besides, we argue that the method can readily be applied to cases where the master equation is a system of coupled equations. By adjusting the number of interpolation points, the present method provides a desirable degree of precision, in reasonable balance with its efficiency. The method is flexible and can easily be adopted to various distinct physical scenarios.National Natural Science Foundation of China (NNSFC)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)China Univ Geosci, Inst Geophys & Geomat, Hubei Subsurface Multiscale Imaging Key Lab, Wuhan 430074, Hubei, Peoples R ChinaUniv Sao Paulo, Escola Engn Lorena, BR-12602810 Lorena, SP, BrazilUniv Estadual Paulista, Fac Engn Guaratingueta, BR-12516410 Guaratingueta, SP, BrazilYangzhou Univ, Sch Phys Sci & Technol, Yangzhou 225002, Jiangsu, Peoples R ChinaUniv Estadual Paulista, Fac Engn Guaratingueta, BR-12516410 Guaratingueta, SP, BrazilNational Natural Science Foundation of China (NNSFC): 11805166Iop Publishing LtdChina Univ GeosciUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Yangzhou UnivLin, KaiQian, Wei-Liang [UNESP]2019-10-04T11:57:41Z2019-10-04T11:57:41Z2019-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article10http://dx.doi.org/10.1088/1674-1137/43/3/035105Chinese Physics C. Bristol: Iop Publishing Ltd, v. 43, n. 3, 10 p., 2019.1674-1137http://hdl.handle.net/11449/18440810.1088/1674-1137/43/3/035105WOS:000461073400014Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengChinese Physics Cinfo:eu-repo/semantics/openAccess2021-10-23T17:30:15Zoai:repositorio.unesp.br:11449/184408Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:34:41.143546Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
The matrix method for black hole quasinormal modes |
title |
The matrix method for black hole quasinormal modes |
spellingShingle |
The matrix method for black hole quasinormal modes Lin, Kai quasinormal modes black hole spacetime matrix method quasinormal frequency |
title_short |
The matrix method for black hole quasinormal modes |
title_full |
The matrix method for black hole quasinormal modes |
title_fullStr |
The matrix method for black hole quasinormal modes |
title_full_unstemmed |
The matrix method for black hole quasinormal modes |
title_sort |
The matrix method for black hole quasinormal modes |
author |
Lin, Kai |
author_facet |
Lin, Kai Qian, Wei-Liang [UNESP] |
author_role |
author |
author2 |
Qian, Wei-Liang [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
China Univ Geosci Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) Yangzhou Univ |
dc.contributor.author.fl_str_mv |
Lin, Kai Qian, Wei-Liang [UNESP] |
dc.subject.por.fl_str_mv |
quasinormal modes black hole spacetime matrix method quasinormal frequency |
topic |
quasinormal modes black hole spacetime matrix method quasinormal frequency |
description |
We provide a comprehensive survey of possible applications of the matrix method for black hole quasinormal modes. The proposed algorithm can generally be applied to various background metrics, and in particular, it accommodates both analytic and numerical forms of the tortoise coordinates, as well as black hole spacetimes. We give a detailed account of different types of black hole metrics, master equations, and corresponding boundary conditions. Besides, we argue that the method can readily be applied to cases where the master equation is a system of coupled equations. By adjusting the number of interpolation points, the present method provides a desirable degree of precision, in reasonable balance with its efficiency. The method is flexible and can easily be adopted to various distinct physical scenarios. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-04T11:57:41Z 2019-10-04T11:57:41Z 2019-03-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1088/1674-1137/43/3/035105 Chinese Physics C. Bristol: Iop Publishing Ltd, v. 43, n. 3, 10 p., 2019. 1674-1137 http://hdl.handle.net/11449/184408 10.1088/1674-1137/43/3/035105 WOS:000461073400014 |
url |
http://dx.doi.org/10.1088/1674-1137/43/3/035105 http://hdl.handle.net/11449/184408 |
identifier_str_mv |
Chinese Physics C. Bristol: Iop Publishing Ltd, v. 43, n. 3, 10 p., 2019. 1674-1137 10.1088/1674-1137/43/3/035105 WOS:000461073400014 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Chinese Physics C |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
10 |
dc.publisher.none.fl_str_mv |
Iop Publishing Ltd |
publisher.none.fl_str_mv |
Iop Publishing Ltd |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128951300653056 |