A FPGA-based embedded system for automatic classification of microcalcifications

Detalhes bibliográficos
Autor(a) principal: Docusse, Tiago Alexandre [UNESP]
Data de Publicação: 2013
Outros Autores: Rodrigues da Silvat, Alexandre Cesar [UNESP], Pereira, Aledir Silveira [UNESP], Marranghello, Norian [UNESP], IEEE
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/196058
Resumo: This paper describes the development of an embedded system that automatically classifies microcalcifications detected on digital mammograms into one of the five types proposed by Michele Le Gal, a classification scheme that allows radiologists to decide whether a breast cancer is malignant or not without the need for surgeries. The hardware part of the developed system is based on an Altera Nios II software processor and the embedded software is based on wavelets and artificial neural networks. We have used an Altera DE2-US development kit in order to create a custom System-on-Chip (SoC) that has many advantages over common desktop computers. In our tests the system correctly classified 94.90% of test images, proving it can be used as a second opinion by radiologists in breast cancer early diagnosis.
id UNSP_8acc385402eeb3184f74d26cec2bdce9
oai_identifier_str oai:repositorio.unesp.br:11449/196058
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A FPGA-based embedded system for automatic classification of microcalcificationsThis paper describes the development of an embedded system that automatically classifies microcalcifications detected on digital mammograms into one of the five types proposed by Michele Le Gal, a classification scheme that allows radiologists to decide whether a breast cancer is malignant or not without the need for surgeries. The hardware part of the developed system is based on an Altera Nios II software processor and the embedded software is based on wavelets and artificial neural networks. We have used an Altera DE2-US development kit in order to create a custom System-on-Chip (SoC) that has many advantages over common desktop computers. In our tests the system correctly classified 94.90% of test images, proving it can be used as a second opinion by radiologists in breast cancer early diagnosis.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Inst Fed Educ Ciencia & Tecnol Sao Paulo, Barretos, SP, BrazilSao Paulo State Univ, Dept Engenhar Elect, Ilha Solteira, SP, BrazilSao Paulo State Univ, Dept Engenhar Elect, Sao Jose Do Rio Preto, SP, BrazilSao Paulo State Univ, Dept Engenhar Elect, Ilha Solteira, SP, BrazilSao Paulo State Univ, Dept Engenhar Elect, Sao Jose Do Rio Preto, SP, BrazilCNPq: 309023/20122IeeeInst Fed Educ Ciencia & Tecnol Sao PauloUniversidade Estadual Paulista (Unesp)Docusse, Tiago Alexandre [UNESP]Rodrigues da Silvat, Alexandre Cesar [UNESP]Pereira, Aledir Silveira [UNESP]Marranghello, Norian [UNESP]IEEE2020-12-10T19:31:56Z2020-12-10T19:31:56Z2013-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject42013 25th International Conference On Microelectronics (icm). New York: Ieee, 4 p., 2013.2159-1679http://hdl.handle.net/11449/196058WOS:00033396500002820986232628927190000-0003-1086-3312Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2013 25th International Conference On Microelectronics (icm)info:eu-repo/semantics/openAccess2024-07-04T19:11:38Zoai:repositorio.unesp.br:11449/196058Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:09:29.541204Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A FPGA-based embedded system for automatic classification of microcalcifications
title A FPGA-based embedded system for automatic classification of microcalcifications
spellingShingle A FPGA-based embedded system for automatic classification of microcalcifications
Docusse, Tiago Alexandre [UNESP]
title_short A FPGA-based embedded system for automatic classification of microcalcifications
title_full A FPGA-based embedded system for automatic classification of microcalcifications
title_fullStr A FPGA-based embedded system for automatic classification of microcalcifications
title_full_unstemmed A FPGA-based embedded system for automatic classification of microcalcifications
title_sort A FPGA-based embedded system for automatic classification of microcalcifications
author Docusse, Tiago Alexandre [UNESP]
author_facet Docusse, Tiago Alexandre [UNESP]
Rodrigues da Silvat, Alexandre Cesar [UNESP]
Pereira, Aledir Silveira [UNESP]
Marranghello, Norian [UNESP]
IEEE
author_role author
author2 Rodrigues da Silvat, Alexandre Cesar [UNESP]
Pereira, Aledir Silveira [UNESP]
Marranghello, Norian [UNESP]
IEEE
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Inst Fed Educ Ciencia & Tecnol Sao Paulo
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Docusse, Tiago Alexandre [UNESP]
Rodrigues da Silvat, Alexandre Cesar [UNESP]
Pereira, Aledir Silveira [UNESP]
Marranghello, Norian [UNESP]
IEEE
description This paper describes the development of an embedded system that automatically classifies microcalcifications detected on digital mammograms into one of the five types proposed by Michele Le Gal, a classification scheme that allows radiologists to decide whether a breast cancer is malignant or not without the need for surgeries. The hardware part of the developed system is based on an Altera Nios II software processor and the embedded software is based on wavelets and artificial neural networks. We have used an Altera DE2-US development kit in order to create a custom System-on-Chip (SoC) that has many advantages over common desktop computers. In our tests the system correctly classified 94.90% of test images, proving it can be used as a second opinion by radiologists in breast cancer early diagnosis.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01
2020-12-10T19:31:56Z
2020-12-10T19:31:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 2013 25th International Conference On Microelectronics (icm). New York: Ieee, 4 p., 2013.
2159-1679
http://hdl.handle.net/11449/196058
WOS:000333965000028
2098623262892719
0000-0003-1086-3312
identifier_str_mv 2013 25th International Conference On Microelectronics (icm). New York: Ieee, 4 p., 2013.
2159-1679
WOS:000333965000028
2098623262892719
0000-0003-1086-3312
url http://hdl.handle.net/11449/196058
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2013 25th International Conference On Microelectronics (icm)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 4
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128903428964352