Lefschetz coincidence class for several maps

Detalhes bibliográficos
Autor(a) principal: Monis, Thaís F. M. [UNESP]
Data de Publicação: 2016
Outros Autores: Spież, Stanisław
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s11784-015-0266-8
http://hdl.handle.net/11449/172587
Resumo: The aim of this paper is to define a Lefschetz coincidence class for several maps. More specifically, for maps (Formula presented.) from a topological space X into a connected closed n-manifold (even nonorientable) N, a cohomological class (Formula presented.) is defined in such a way that (Formula presented.) implies that the set of coincidences (Formula presented.) is nonempty.
id UNSP_8af8b69667f933411310f7f5ceb6d17e
oai_identifier_str oai:repositorio.unesp.br:11449/172587
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Lefschetz coincidence class for several mapsThe aim of this paper is to define a Lefschetz coincidence class for several maps. More specifically, for maps (Formula presented.) from a topological space X into a connected closed n-manifold (even nonorientable) N, a cohomological class (Formula presented.) is defined in such a way that (Formula presented.) implies that the set of coincidences (Formula presented.) is nonempty.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Department of Mathematics IGCE UNESP – Universidade Estadual Paulista, Av. 24-A no. 1515Institute of Mathematics Polish Academy of Sciences, ul.Śniadeckich 8Department of Mathematics IGCE UNESP – Universidade Estadual Paulista, Av. 24-A no. 1515FAPESP: 2012/03316-6FAPESP: 2013/07936-1Universidade Estadual Paulista (Unesp)Polish Academy of SciencesMonis, Thaís F. M. [UNESP]Spież, Stanisław2018-12-11T17:01:14Z2018-12-11T17:01:14Z2016-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article61-76application/pdfhttp://dx.doi.org/10.1007/s11784-015-0266-8Journal of Fixed Point Theory and Applications, v. 18, n. 1, p. 61-76, 2016.1661-77461661-7738http://hdl.handle.net/11449/17258710.1007/s11784-015-0266-82-s2.0-849591113162-s2.0-84959111316.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Fixed Point Theory and Applications0,416info:eu-repo/semantics/openAccess2023-12-31T06:18:41Zoai:repositorio.unesp.br:11449/172587Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:46:51.533621Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Lefschetz coincidence class for several maps
title Lefschetz coincidence class for several maps
spellingShingle Lefschetz coincidence class for several maps
Monis, Thaís F. M. [UNESP]
title_short Lefschetz coincidence class for several maps
title_full Lefschetz coincidence class for several maps
title_fullStr Lefschetz coincidence class for several maps
title_full_unstemmed Lefschetz coincidence class for several maps
title_sort Lefschetz coincidence class for several maps
author Monis, Thaís F. M. [UNESP]
author_facet Monis, Thaís F. M. [UNESP]
Spież, Stanisław
author_role author
author2 Spież, Stanisław
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Polish Academy of Sciences
dc.contributor.author.fl_str_mv Monis, Thaís F. M. [UNESP]
Spież, Stanisław
description The aim of this paper is to define a Lefschetz coincidence class for several maps. More specifically, for maps (Formula presented.) from a topological space X into a connected closed n-manifold (even nonorientable) N, a cohomological class (Formula presented.) is defined in such a way that (Formula presented.) implies that the set of coincidences (Formula presented.) is nonempty.
publishDate 2016
dc.date.none.fl_str_mv 2016-03-01
2018-12-11T17:01:14Z
2018-12-11T17:01:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s11784-015-0266-8
Journal of Fixed Point Theory and Applications, v. 18, n. 1, p. 61-76, 2016.
1661-7746
1661-7738
http://hdl.handle.net/11449/172587
10.1007/s11784-015-0266-8
2-s2.0-84959111316
2-s2.0-84959111316.pdf
url http://dx.doi.org/10.1007/s11784-015-0266-8
http://hdl.handle.net/11449/172587
identifier_str_mv Journal of Fixed Point Theory and Applications, v. 18, n. 1, p. 61-76, 2016.
1661-7746
1661-7738
10.1007/s11784-015-0266-8
2-s2.0-84959111316
2-s2.0-84959111316.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Fixed Point Theory and Applications
0,416
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 61-76
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129356964298752