Lefschetz coincidence class for several maps
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s11784-015-0266-8 http://hdl.handle.net/11449/172587 |
Resumo: | The aim of this paper is to define a Lefschetz coincidence class for several maps. More specifically, for maps (Formula presented.) from a topological space X into a connected closed n-manifold (even nonorientable) N, a cohomological class (Formula presented.) is defined in such a way that (Formula presented.) implies that the set of coincidences (Formula presented.) is nonempty. |
id |
UNSP_8af8b69667f933411310f7f5ceb6d17e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/172587 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Lefschetz coincidence class for several mapsThe aim of this paper is to define a Lefschetz coincidence class for several maps. More specifically, for maps (Formula presented.) from a topological space X into a connected closed n-manifold (even nonorientable) N, a cohomological class (Formula presented.) is defined in such a way that (Formula presented.) implies that the set of coincidences (Formula presented.) is nonempty.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Department of Mathematics IGCE UNESP – Universidade Estadual Paulista, Av. 24-A no. 1515Institute of Mathematics Polish Academy of Sciences, ul.Śniadeckich 8Department of Mathematics IGCE UNESP – Universidade Estadual Paulista, Av. 24-A no. 1515FAPESP: 2012/03316-6FAPESP: 2013/07936-1Universidade Estadual Paulista (Unesp)Polish Academy of SciencesMonis, Thaís F. M. [UNESP]Spież, Stanisław2018-12-11T17:01:14Z2018-12-11T17:01:14Z2016-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article61-76application/pdfhttp://dx.doi.org/10.1007/s11784-015-0266-8Journal of Fixed Point Theory and Applications, v. 18, n. 1, p. 61-76, 2016.1661-77461661-7738http://hdl.handle.net/11449/17258710.1007/s11784-015-0266-82-s2.0-849591113162-s2.0-84959111316.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Fixed Point Theory and Applications0,416info:eu-repo/semantics/openAccess2023-12-31T06:18:41Zoai:repositorio.unesp.br:11449/172587Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:46:51.533621Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Lefschetz coincidence class for several maps |
title |
Lefschetz coincidence class for several maps |
spellingShingle |
Lefschetz coincidence class for several maps Monis, Thaís F. M. [UNESP] |
title_short |
Lefschetz coincidence class for several maps |
title_full |
Lefschetz coincidence class for several maps |
title_fullStr |
Lefschetz coincidence class for several maps |
title_full_unstemmed |
Lefschetz coincidence class for several maps |
title_sort |
Lefschetz coincidence class for several maps |
author |
Monis, Thaís F. M. [UNESP] |
author_facet |
Monis, Thaís F. M. [UNESP] Spież, Stanisław |
author_role |
author |
author2 |
Spież, Stanisław |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Polish Academy of Sciences |
dc.contributor.author.fl_str_mv |
Monis, Thaís F. M. [UNESP] Spież, Stanisław |
description |
The aim of this paper is to define a Lefschetz coincidence class for several maps. More specifically, for maps (Formula presented.) from a topological space X into a connected closed n-manifold (even nonorientable) N, a cohomological class (Formula presented.) is defined in such a way that (Formula presented.) implies that the set of coincidences (Formula presented.) is nonempty. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03-01 2018-12-11T17:01:14Z 2018-12-11T17:01:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s11784-015-0266-8 Journal of Fixed Point Theory and Applications, v. 18, n. 1, p. 61-76, 2016. 1661-7746 1661-7738 http://hdl.handle.net/11449/172587 10.1007/s11784-015-0266-8 2-s2.0-84959111316 2-s2.0-84959111316.pdf |
url |
http://dx.doi.org/10.1007/s11784-015-0266-8 http://hdl.handle.net/11449/172587 |
identifier_str_mv |
Journal of Fixed Point Theory and Applications, v. 18, n. 1, p. 61-76, 2016. 1661-7746 1661-7738 10.1007/s11784-015-0266-8 2-s2.0-84959111316 2-s2.0-84959111316.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Fixed Point Theory and Applications 0,416 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
61-76 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129356964298752 |