Logistic-like and Gauss coupled maps: The born of period-adding cascades

Detalhes bibliográficos
Autor(a) principal: da Costa, Diogo Ricardo
Data de Publicação: 2021
Outros Autores: Rocha, Julia G.S. [UNESP], de Paiva, Luam S. [UNESP], Medrano-T, Rene O.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.chaos.2021.110688
http://hdl.handle.net/11449/207164
Resumo: In this paper we study a logistic-like and Gauss coupled maps to investigate the period-adding phenomenon, where infinite sets of periodicity (p) form a sequence in planar parameter spaces, such that, the periodicity of adjacent elements differ by a same constant (ρ) in the whole sequence (pi+1−pi=ρ). We describe the complete mechanism that form this sequence from a closed domain of isoperiodicity. Changing a control parameter, infinite different periodicities ring-shaped take place in this domain promoting regions of chaoticity. In this environment several complex sets of periodicity arise aligning themselves in sequences of period-adding, which is a common scenario that appears in a great variety of nonlinear dynamical systems. The complete process is unraveled by applying the theory of extreme orbits.
id UNSP_8b222e10541fe548023b20ee89055cbe
oai_identifier_str oai:repositorio.unesp.br:11449/207164
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Logistic-like and Gauss coupled maps: The born of period-adding cascadesChaosDissipative systemsMappingsNonlinear dynamicsIn this paper we study a logistic-like and Gauss coupled maps to investigate the period-adding phenomenon, where infinite sets of periodicity (p) form a sequence in planar parameter spaces, such that, the periodicity of adjacent elements differ by a same constant (ρ) in the whole sequence (pi+1−pi=ρ). We describe the complete mechanism that form this sequence from a closed domain of isoperiodicity. Changing a control parameter, infinite different periodicities ring-shaped take place in this domain promoting regions of chaoticity. In this environment several complex sets of periodicity arise aligning themselves in sequences of period-adding, which is a common scenario that appears in a great variety of nonlinear dynamical systems. The complete process is unraveled by applying the theory of extreme orbits.Institute of Mathematics and Statistics - University of São Paulo, CEP 05508-090 São PauloPostgraduate program in Science/Physics State University of Ponta Grossa (UEPG), 84030-900 Ponta GrossaDepartamento de Física Universidade Estadual Paulista (UNESP) Instituto de Geociências e Ciências Exatas, Campus Rio Claro, Av. 24A, 1515Departamento de Física Universidade Federal de São Paulo (UNIFESP), Campus Diadema, R. São Nicolau, 210Departamento de Física Universidade Estadual Paulista (UNESP) Instituto de Geociências e Ciências Exatas, Campus Rio Claro, Av. 24A, 1515Universidade de São Paulo (USP)Universidade Estadual de Ponta Grossa (UEPG)Universidade Estadual Paulista (Unesp)Universidade Federal de São Paulo (UNIFESP)da Costa, Diogo RicardoRocha, Julia G.S. [UNESP]de Paiva, Luam S. [UNESP]Medrano-T, Rene O.2021-06-25T10:49:57Z2021-06-25T10:49:57Z2021-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.chaos.2021.110688Chaos, Solitons and Fractals, v. 144.0960-0779http://hdl.handle.net/11449/20716410.1016/j.chaos.2021.1106882-s2.0-85099679119Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengChaos, Solitons and Fractalsinfo:eu-repo/semantics/openAccess2021-10-23T16:22:40Zoai:repositorio.unesp.br:11449/207164Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:38:11.300770Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Logistic-like and Gauss coupled maps: The born of period-adding cascades
title Logistic-like and Gauss coupled maps: The born of period-adding cascades
spellingShingle Logistic-like and Gauss coupled maps: The born of period-adding cascades
da Costa, Diogo Ricardo
Chaos
Dissipative systems
Mappings
Nonlinear dynamics
title_short Logistic-like and Gauss coupled maps: The born of period-adding cascades
title_full Logistic-like and Gauss coupled maps: The born of period-adding cascades
title_fullStr Logistic-like and Gauss coupled maps: The born of period-adding cascades
title_full_unstemmed Logistic-like and Gauss coupled maps: The born of period-adding cascades
title_sort Logistic-like and Gauss coupled maps: The born of period-adding cascades
author da Costa, Diogo Ricardo
author_facet da Costa, Diogo Ricardo
Rocha, Julia G.S. [UNESP]
de Paiva, Luam S. [UNESP]
Medrano-T, Rene O.
author_role author
author2 Rocha, Julia G.S. [UNESP]
de Paiva, Luam S. [UNESP]
Medrano-T, Rene O.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual de Ponta Grossa (UEPG)
Universidade Estadual Paulista (Unesp)
Universidade Federal de São Paulo (UNIFESP)
dc.contributor.author.fl_str_mv da Costa, Diogo Ricardo
Rocha, Julia G.S. [UNESP]
de Paiva, Luam S. [UNESP]
Medrano-T, Rene O.
dc.subject.por.fl_str_mv Chaos
Dissipative systems
Mappings
Nonlinear dynamics
topic Chaos
Dissipative systems
Mappings
Nonlinear dynamics
description In this paper we study a logistic-like and Gauss coupled maps to investigate the period-adding phenomenon, where infinite sets of periodicity (p) form a sequence in planar parameter spaces, such that, the periodicity of adjacent elements differ by a same constant (ρ) in the whole sequence (pi+1−pi=ρ). We describe the complete mechanism that form this sequence from a closed domain of isoperiodicity. Changing a control parameter, infinite different periodicities ring-shaped take place in this domain promoting regions of chaoticity. In this environment several complex sets of periodicity arise aligning themselves in sequences of period-adding, which is a common scenario that appears in a great variety of nonlinear dynamical systems. The complete process is unraveled by applying the theory of extreme orbits.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-25T10:49:57Z
2021-06-25T10:49:57Z
2021-03-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.chaos.2021.110688
Chaos, Solitons and Fractals, v. 144.
0960-0779
http://hdl.handle.net/11449/207164
10.1016/j.chaos.2021.110688
2-s2.0-85099679119
url http://dx.doi.org/10.1016/j.chaos.2021.110688
http://hdl.handle.net/11449/207164
identifier_str_mv Chaos, Solitons and Fractals, v. 144.
0960-0779
10.1016/j.chaos.2021.110688
2-s2.0-85099679119
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Chaos, Solitons and Fractals
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129342617681920