Logistic-like and Gauss coupled maps: The born of period-adding cascades
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.chaos.2021.110688 http://hdl.handle.net/11449/207164 |
Resumo: | In this paper we study a logistic-like and Gauss coupled maps to investigate the period-adding phenomenon, where infinite sets of periodicity (p) form a sequence in planar parameter spaces, such that, the periodicity of adjacent elements differ by a same constant (ρ) in the whole sequence (pi+1−pi=ρ). We describe the complete mechanism that form this sequence from a closed domain of isoperiodicity. Changing a control parameter, infinite different periodicities ring-shaped take place in this domain promoting regions of chaoticity. In this environment several complex sets of periodicity arise aligning themselves in sequences of period-adding, which is a common scenario that appears in a great variety of nonlinear dynamical systems. The complete process is unraveled by applying the theory of extreme orbits. |
id |
UNSP_8b222e10541fe548023b20ee89055cbe |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/207164 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Logistic-like and Gauss coupled maps: The born of period-adding cascadesChaosDissipative systemsMappingsNonlinear dynamicsIn this paper we study a logistic-like and Gauss coupled maps to investigate the period-adding phenomenon, where infinite sets of periodicity (p) form a sequence in planar parameter spaces, such that, the periodicity of adjacent elements differ by a same constant (ρ) in the whole sequence (pi+1−pi=ρ). We describe the complete mechanism that form this sequence from a closed domain of isoperiodicity. Changing a control parameter, infinite different periodicities ring-shaped take place in this domain promoting regions of chaoticity. In this environment several complex sets of periodicity arise aligning themselves in sequences of period-adding, which is a common scenario that appears in a great variety of nonlinear dynamical systems. The complete process is unraveled by applying the theory of extreme orbits.Institute of Mathematics and Statistics - University of São Paulo, CEP 05508-090 São PauloPostgraduate program in Science/Physics State University of Ponta Grossa (UEPG), 84030-900 Ponta GrossaDepartamento de Física Universidade Estadual Paulista (UNESP) Instituto de Geociências e Ciências Exatas, Campus Rio Claro, Av. 24A, 1515Departamento de Física Universidade Federal de São Paulo (UNIFESP), Campus Diadema, R. São Nicolau, 210Departamento de Física Universidade Estadual Paulista (UNESP) Instituto de Geociências e Ciências Exatas, Campus Rio Claro, Av. 24A, 1515Universidade de São Paulo (USP)Universidade Estadual de Ponta Grossa (UEPG)Universidade Estadual Paulista (Unesp)Universidade Federal de São Paulo (UNIFESP)da Costa, Diogo RicardoRocha, Julia G.S. [UNESP]de Paiva, Luam S. [UNESP]Medrano-T, Rene O.2021-06-25T10:49:57Z2021-06-25T10:49:57Z2021-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.chaos.2021.110688Chaos, Solitons and Fractals, v. 144.0960-0779http://hdl.handle.net/11449/20716410.1016/j.chaos.2021.1106882-s2.0-85099679119Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengChaos, Solitons and Fractalsinfo:eu-repo/semantics/openAccess2021-10-23T16:22:40Zoai:repositorio.unesp.br:11449/207164Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:38:11.300770Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Logistic-like and Gauss coupled maps: The born of period-adding cascades |
title |
Logistic-like and Gauss coupled maps: The born of period-adding cascades |
spellingShingle |
Logistic-like and Gauss coupled maps: The born of period-adding cascades da Costa, Diogo Ricardo Chaos Dissipative systems Mappings Nonlinear dynamics |
title_short |
Logistic-like and Gauss coupled maps: The born of period-adding cascades |
title_full |
Logistic-like and Gauss coupled maps: The born of period-adding cascades |
title_fullStr |
Logistic-like and Gauss coupled maps: The born of period-adding cascades |
title_full_unstemmed |
Logistic-like and Gauss coupled maps: The born of period-adding cascades |
title_sort |
Logistic-like and Gauss coupled maps: The born of period-adding cascades |
author |
da Costa, Diogo Ricardo |
author_facet |
da Costa, Diogo Ricardo Rocha, Julia G.S. [UNESP] de Paiva, Luam S. [UNESP] Medrano-T, Rene O. |
author_role |
author |
author2 |
Rocha, Julia G.S. [UNESP] de Paiva, Luam S. [UNESP] Medrano-T, Rene O. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual de Ponta Grossa (UEPG) Universidade Estadual Paulista (Unesp) Universidade Federal de São Paulo (UNIFESP) |
dc.contributor.author.fl_str_mv |
da Costa, Diogo Ricardo Rocha, Julia G.S. [UNESP] de Paiva, Luam S. [UNESP] Medrano-T, Rene O. |
dc.subject.por.fl_str_mv |
Chaos Dissipative systems Mappings Nonlinear dynamics |
topic |
Chaos Dissipative systems Mappings Nonlinear dynamics |
description |
In this paper we study a logistic-like and Gauss coupled maps to investigate the period-adding phenomenon, where infinite sets of periodicity (p) form a sequence in planar parameter spaces, such that, the periodicity of adjacent elements differ by a same constant (ρ) in the whole sequence (pi+1−pi=ρ). We describe the complete mechanism that form this sequence from a closed domain of isoperiodicity. Changing a control parameter, infinite different periodicities ring-shaped take place in this domain promoting regions of chaoticity. In this environment several complex sets of periodicity arise aligning themselves in sequences of period-adding, which is a common scenario that appears in a great variety of nonlinear dynamical systems. The complete process is unraveled by applying the theory of extreme orbits. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-25T10:49:57Z 2021-06-25T10:49:57Z 2021-03-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.chaos.2021.110688 Chaos, Solitons and Fractals, v. 144. 0960-0779 http://hdl.handle.net/11449/207164 10.1016/j.chaos.2021.110688 2-s2.0-85099679119 |
url |
http://dx.doi.org/10.1016/j.chaos.2021.110688 http://hdl.handle.net/11449/207164 |
identifier_str_mv |
Chaos, Solitons and Fractals, v. 144. 0960-0779 10.1016/j.chaos.2021.110688 2-s2.0-85099679119 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Chaos, Solitons and Fractals |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129342617681920 |