Tilted-hat mushroom billiards: Web-like hierarchical mixed phase space

Detalhes bibliográficos
Autor(a) principal: da Costa, Diogo Ricardo [UNESP]
Data de Publicação: 2020
Outros Autores: Palmero, Matheus S., Méndez-Bermúdez, J. A., Iarosz, Kelly C., Szezech, José D., Batista, Antonio M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.cnsns.2020.105440
http://hdl.handle.net/11449/200791
Resumo: Mushroom billiards are formed, generically, by a semicircular hat attached to a rectangular stem. The dynamics of mushroom billiards shows a continuous transition from integrability to chaos. However, between those limits the phase space is sharply divided in two components corresponding to regular and chaotic orbits, in contrast to most mixed phase space billiards. In this paper we show that tilting the hat of a mushroom billiard produces a highly non-trivial (i.e. non-KAM) mixed phase space. Moreover, for small tilting, this phase space shows a web-like hierarchical structure.
id UNSP_8b4956ccaf586e12229b049ec3e49eee
oai_identifier_str oai:repositorio.unesp.br:11449/200791
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Tilted-hat mushroom billiards: Web-like hierarchical mixed phase spaceChaosMushroom billiardsNonlinear dynamicsMushroom billiards are formed, generically, by a semicircular hat attached to a rectangular stem. The dynamics of mushroom billiards shows a continuous transition from integrability to chaos. However, between those limits the phase space is sharply divided in two components corresponding to regular and chaotic orbits, in contrast to most mixed phase space billiards. In this paper we show that tilting the hat of a mushroom billiard produces a highly non-trivial (i.e. non-KAM) mixed phase space. Moreover, for small tilting, this phase space shows a web-like hierarchical structure.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de PueblaSecretaría de Educación PúblicaInstitute of Mathematics and Statistics University of São PauloPostgraduate program in Science/Physics State University of Ponta Grossa (UEPG)Institute of Physics University of São Paulo (USP)Departamento de Matemática Aplicada e Estatística Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo - Campus de São Carlos, Caixa Postal 668Instituto de Física Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48Graduate Program in Chemical Engineering Federal Technological University of ParanáDepartament of Mathematics and Statistics State University of Ponta Grossa (UEPG)Departamento de Física Universidade Estadual Paulista (UNESP) Instituto de Geociências e Ciências Exatas, Campus Rio Claro, Av. 24A, 1515Departamento de Física Universidade Estadual Paulista (UNESP) Instituto de Geociências e Ciências Exatas, Campus Rio Claro, Av. 24A, 1515Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla: 100405811-VIEP2019FAPESP: 2015/07311-7FAPESP: 2018/03000-5FAPESP: 2018/03211-6FAPESP: 2019/06931-2FAPESP: 2020/02415-7Secretaría de Educación Pública: 511-6/2019.-11821Universidade de São Paulo (USP)Universidade Estadual de Ponta Grossa (UEPG)Benemérita Universidad Autónoma de PueblaFederal Technological University of ParanáUniversidade Estadual Paulista (Unesp)da Costa, Diogo Ricardo [UNESP]Palmero, Matheus S.Méndez-Bermúdez, J. A.Iarosz, Kelly C.Szezech, José D.Batista, Antonio M.2020-12-12T02:16:10Z2020-12-12T02:16:10Z2020-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.cnsns.2020.105440Communications in Nonlinear Science and Numerical Simulation, v. 91.1007-5704http://hdl.handle.net/11449/20079110.1016/j.cnsns.2020.1054402-s2.0-85088305253Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengCommunications in Nonlinear Science and Numerical Simulationinfo:eu-repo/semantics/openAccess2021-10-23T15:09:13Zoai:repositorio.unesp.br:11449/200791Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:01:49.157359Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Tilted-hat mushroom billiards: Web-like hierarchical mixed phase space
title Tilted-hat mushroom billiards: Web-like hierarchical mixed phase space
spellingShingle Tilted-hat mushroom billiards: Web-like hierarchical mixed phase space
da Costa, Diogo Ricardo [UNESP]
Chaos
Mushroom billiards
Nonlinear dynamics
title_short Tilted-hat mushroom billiards: Web-like hierarchical mixed phase space
title_full Tilted-hat mushroom billiards: Web-like hierarchical mixed phase space
title_fullStr Tilted-hat mushroom billiards: Web-like hierarchical mixed phase space
title_full_unstemmed Tilted-hat mushroom billiards: Web-like hierarchical mixed phase space
title_sort Tilted-hat mushroom billiards: Web-like hierarchical mixed phase space
author da Costa, Diogo Ricardo [UNESP]
author_facet da Costa, Diogo Ricardo [UNESP]
Palmero, Matheus S.
Méndez-Bermúdez, J. A.
Iarosz, Kelly C.
Szezech, José D.
Batista, Antonio M.
author_role author
author2 Palmero, Matheus S.
Méndez-Bermúdez, J. A.
Iarosz, Kelly C.
Szezech, José D.
Batista, Antonio M.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual de Ponta Grossa (UEPG)
Benemérita Universidad Autónoma de Puebla
Federal Technological University of Paraná
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv da Costa, Diogo Ricardo [UNESP]
Palmero, Matheus S.
Méndez-Bermúdez, J. A.
Iarosz, Kelly C.
Szezech, José D.
Batista, Antonio M.
dc.subject.por.fl_str_mv Chaos
Mushroom billiards
Nonlinear dynamics
topic Chaos
Mushroom billiards
Nonlinear dynamics
description Mushroom billiards are formed, generically, by a semicircular hat attached to a rectangular stem. The dynamics of mushroom billiards shows a continuous transition from integrability to chaos. However, between those limits the phase space is sharply divided in two components corresponding to regular and chaotic orbits, in contrast to most mixed phase space billiards. In this paper we show that tilting the hat of a mushroom billiard produces a highly non-trivial (i.e. non-KAM) mixed phase space. Moreover, for small tilting, this phase space shows a web-like hierarchical structure.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T02:16:10Z
2020-12-12T02:16:10Z
2020-12-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.cnsns.2020.105440
Communications in Nonlinear Science and Numerical Simulation, v. 91.
1007-5704
http://hdl.handle.net/11449/200791
10.1016/j.cnsns.2020.105440
2-s2.0-85088305253
url http://dx.doi.org/10.1016/j.cnsns.2020.105440
http://hdl.handle.net/11449/200791
identifier_str_mv Communications in Nonlinear Science and Numerical Simulation, v. 91.
1007-5704
10.1016/j.cnsns.2020.105440
2-s2.0-85088305253
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Communications in Nonlinear Science and Numerical Simulation
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129150814257152