A Novel Technique to Estimate Biological Parameters in an Epidemiology Problem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-319-59153-7_10 http://hdl.handle.net/11449/164584 |
Resumo: | In this paper, we describe a study of a parameter estimation technique to estimate a set of unknown biological parameters of a nonlinear dynamic model of dengue. We also explore a Levenberg-Marquardt (LM) algorithm to minimize the cost function. A classical mathematical model describes the dynamics of mosquitoes in water and winged phases, where the data are available. The main interest is to fit the model to the data taking into account the parameters estimated. Numerical simulations were performed and results showed the robustness of LM in estimating the important parameters in the dengue disease problem. |
id |
UNSP_8d98885fabc1e316a13cc41004c11aae |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/164584 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A Novel Technique to Estimate Biological Parameters in an Epidemiology ProblemComputational population dynamicsOrdinary differential systemAedesDengueIn this paper, we describe a study of a parameter estimation technique to estimate a set of unknown biological parameters of a nonlinear dynamic model of dengue. We also explore a Levenberg-Marquardt (LM) algorithm to minimize the cost function. A classical mathematical model describes the dynamics of mosquitoes in water and winged phases, where the data are available. The main interest is to fit the model to the data taking into account the parameters estimated. Numerical simulations were performed and results showed the robustness of LM in estimating the important parameters in the dengue disease problem.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Sao Paulo State Univ, Inst Biosci Botucatu, Botucatu, SP, BrazilSao Paulo State Univ, Inst Biosci Botucatu, Dept Biostat, BR-18618689 Botucatu, SP, BrazilSao Paulo State Univ, Inst Biosci Botucatu, Botucatu, SP, BrazilSao Paulo State Univ, Inst Biosci Botucatu, Dept Biostat, BR-18618689 Botucatu, SP, BrazilSpringerUniversidade Estadual Paulista (Unesp)Benedito, Antone dos Santos [UNESP]Pio dos Santos, Fernando Luiz [UNESP]Rojas, IJoya, G.Catala, A.2018-11-26T17:55:11Z2018-11-26T17:55:11Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject112-122application/pdfhttp://dx.doi.org/10.1007/978-3-319-59153-7_10Advances In Computational Intelligence, Iwann 2017, Pt I. Cham: Springer International Publishing Ag, v. 10305, p. 112-122, 2017.0302-9743http://hdl.handle.net/11449/16458410.1007/978-3-319-59153-7_10WOS:000443108200010WOS000443108200010.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAdvances In Computational Intelligence, Iwann 2017, Pt I0,295info:eu-repo/semantics/openAccess2023-09-30T06:01:22Zoai:repositorio.unesp.br:11449/164584Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:32:14.919650Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A Novel Technique to Estimate Biological Parameters in an Epidemiology Problem |
title |
A Novel Technique to Estimate Biological Parameters in an Epidemiology Problem |
spellingShingle |
A Novel Technique to Estimate Biological Parameters in an Epidemiology Problem Benedito, Antone dos Santos [UNESP] Computational population dynamics Ordinary differential system Aedes Dengue |
title_short |
A Novel Technique to Estimate Biological Parameters in an Epidemiology Problem |
title_full |
A Novel Technique to Estimate Biological Parameters in an Epidemiology Problem |
title_fullStr |
A Novel Technique to Estimate Biological Parameters in an Epidemiology Problem |
title_full_unstemmed |
A Novel Technique to Estimate Biological Parameters in an Epidemiology Problem |
title_sort |
A Novel Technique to Estimate Biological Parameters in an Epidemiology Problem |
author |
Benedito, Antone dos Santos [UNESP] |
author_facet |
Benedito, Antone dos Santos [UNESP] Pio dos Santos, Fernando Luiz [UNESP] Rojas, I Joya, G. Catala, A. |
author_role |
author |
author2 |
Pio dos Santos, Fernando Luiz [UNESP] Rojas, I Joya, G. Catala, A. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Benedito, Antone dos Santos [UNESP] Pio dos Santos, Fernando Luiz [UNESP] Rojas, I Joya, G. Catala, A. |
dc.subject.por.fl_str_mv |
Computational population dynamics Ordinary differential system Aedes Dengue |
topic |
Computational population dynamics Ordinary differential system Aedes Dengue |
description |
In this paper, we describe a study of a parameter estimation technique to estimate a set of unknown biological parameters of a nonlinear dynamic model of dengue. We also explore a Levenberg-Marquardt (LM) algorithm to minimize the cost function. A classical mathematical model describes the dynamics of mosquitoes in water and winged phases, where the data are available. The main interest is to fit the model to the data taking into account the parameters estimated. Numerical simulations were performed and results showed the robustness of LM in estimating the important parameters in the dengue disease problem. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 2018-11-26T17:55:11Z 2018-11-26T17:55:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-319-59153-7_10 Advances In Computational Intelligence, Iwann 2017, Pt I. Cham: Springer International Publishing Ag, v. 10305, p. 112-122, 2017. 0302-9743 http://hdl.handle.net/11449/164584 10.1007/978-3-319-59153-7_10 WOS:000443108200010 WOS000443108200010.pdf |
url |
http://dx.doi.org/10.1007/978-3-319-59153-7_10 http://hdl.handle.net/11449/164584 |
identifier_str_mv |
Advances In Computational Intelligence, Iwann 2017, Pt I. Cham: Springer International Publishing Ag, v. 10305, p. 112-122, 2017. 0302-9743 10.1007/978-3-319-59153-7_10 WOS:000443108200010 WOS000443108200010.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Advances In Computational Intelligence, Iwann 2017, Pt I 0,295 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
112-122 application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128244090667008 |