Automatic Detection and Recognition of Text-Based Traffic Signs from Images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/TLA.2018.8804261 http://hdl.handle.net/11449/184663 |
Resumo: | Detection and recognition of texts in traffic signs has been widely studied and with the advance in image capture technology has helped to improve or to create new methods to achieve this issue. In this work, we presented a method for detection, segmentation and recognition of text-based traffic signs from images analyzing and processing techniques. The results show that the computational cost and accuracy rate considering the proposed approach are acceptable to real time applications, with an execution time under 0.5 seconds, with a hit rate of 94.38% in the plate detection, 83.42% in the character segmentation and 89.23 in the digit classification. |
id |
UNSP_8f1f8492b36fa78795cab36c700821e5 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/184663 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Automatic Detection and Recognition of Text-Based Traffic Signs from ImagesTraffic signs detectionTraffic signs recognitionCharacters segmentationOCRDetection and recognition of texts in traffic signs has been widely studied and with the advance in image capture technology has helped to improve or to create new methods to achieve this issue. In this work, we presented a method for detection, segmentation and recognition of text-based traffic signs from images analyzing and processing techniques. The results show that the computational cost and accuracy rate considering the proposed approach are acceptable to real time applications, with an execution time under 0.5 seconds, with a hit rate of 94.38% in the plate detection, 83.42% in the character segmentation and 89.23 in the digit classification.Univ Oeste Paulista, Unoeste, Presidente Prudente, SP, BrazilUniv Estadual Paulista, Unesp, Presidente Prudente, SP, BrazilUniv Fortaleza, Unifor, Programa Grad Informat, Fortaleza, Ceara, BrazilUniv Estadual Paulista, Unesp, Presidente Prudente, SP, BrazilIeee-inst Electrical Electronics Engineers IncUniv Oeste PaulistaUniversidade Estadual Paulista (Unesp)Univ FortalezaOliveira, G.Silva, F.Pereira, D.Almeida, L.Artero, A. [UNESP]Bonora, A.Albuquerque, V. de2019-10-04T12:15:40Z2019-10-04T12:15:40Z2018-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2947-2953http://dx.doi.org/10.1109/TLA.2018.8804261Ieee Latin America Transactions. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 16, n. 12, p. 2947-2953, 2018.1548-0992http://hdl.handle.net/11449/18466310.1109/TLA.2018.8804261WOS:000482564600015Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIeee Latin America Transactionsinfo:eu-repo/semantics/openAccess2021-10-23T19:49:56Zoai:repositorio.unesp.br:11449/184663Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:22:31.033160Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Automatic Detection and Recognition of Text-Based Traffic Signs from Images |
title |
Automatic Detection and Recognition of Text-Based Traffic Signs from Images |
spellingShingle |
Automatic Detection and Recognition of Text-Based Traffic Signs from Images Oliveira, G. Traffic signs detection Traffic signs recognition Characters segmentation OCR |
title_short |
Automatic Detection and Recognition of Text-Based Traffic Signs from Images |
title_full |
Automatic Detection and Recognition of Text-Based Traffic Signs from Images |
title_fullStr |
Automatic Detection and Recognition of Text-Based Traffic Signs from Images |
title_full_unstemmed |
Automatic Detection and Recognition of Text-Based Traffic Signs from Images |
title_sort |
Automatic Detection and Recognition of Text-Based Traffic Signs from Images |
author |
Oliveira, G. |
author_facet |
Oliveira, G. Silva, F. Pereira, D. Almeida, L. Artero, A. [UNESP] Bonora, A. Albuquerque, V. de |
author_role |
author |
author2 |
Silva, F. Pereira, D. Almeida, L. Artero, A. [UNESP] Bonora, A. Albuquerque, V. de |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Univ Oeste Paulista Universidade Estadual Paulista (Unesp) Univ Fortaleza |
dc.contributor.author.fl_str_mv |
Oliveira, G. Silva, F. Pereira, D. Almeida, L. Artero, A. [UNESP] Bonora, A. Albuquerque, V. de |
dc.subject.por.fl_str_mv |
Traffic signs detection Traffic signs recognition Characters segmentation OCR |
topic |
Traffic signs detection Traffic signs recognition Characters segmentation OCR |
description |
Detection and recognition of texts in traffic signs has been widely studied and with the advance in image capture technology has helped to improve or to create new methods to achieve this issue. In this work, we presented a method for detection, segmentation and recognition of text-based traffic signs from images analyzing and processing techniques. The results show that the computational cost and accuracy rate considering the proposed approach are acceptable to real time applications, with an execution time under 0.5 seconds, with a hit rate of 94.38% in the plate detection, 83.42% in the character segmentation and 89.23 in the digit classification. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-01 2019-10-04T12:15:40Z 2019-10-04T12:15:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/TLA.2018.8804261 Ieee Latin America Transactions. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 16, n. 12, p. 2947-2953, 2018. 1548-0992 http://hdl.handle.net/11449/184663 10.1109/TLA.2018.8804261 WOS:000482564600015 |
url |
http://dx.doi.org/10.1109/TLA.2018.8804261 http://hdl.handle.net/11449/184663 |
identifier_str_mv |
Ieee Latin America Transactions. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 16, n. 12, p. 2947-2953, 2018. 1548-0992 10.1109/TLA.2018.8804261 WOS:000482564600015 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ieee Latin America Transactions |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
2947-2953 |
dc.publisher.none.fl_str_mv |
Ieee-inst Electrical Electronics Engineers Inc |
publisher.none.fl_str_mv |
Ieee-inst Electrical Electronics Engineers Inc |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129513329000448 |