Hurst exponent estimation of self-affine time series using quantile graphs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.physa.2015.09.094 http://hdl.handle.net/11449/161065 |
Resumo: | In the context of dynamical systems, time series analysis is frequently used to identify the underlying nature of a phenomenon of interest from a sequence of observations. For signals with a self-affine structure, like fractional Brownian motions (fBm), the Hurst exponent H is one of the key parameters. Here, the use of quantile graphs (QGs) for the estimation of H is proposed. A QG is generated by mapping the quantiles of a time series into nodes of a graph. H is then computed directly as the power-law scaling exponent of the mean jump length performed by a random walker on the QG, for different time differences between the time series data points. The QG method for estimating the Hurst exponent was applied to fBm with different H values. Comparison with the exact H values used to generate the motions showed an excellent agreement. For a given time series length, estimation error depends basically on the statistical framework used for determining the exponent of the power-law model. The QG method is numerically simple and has only one free parameter, Q, the number of quantiles/nodes. With a simple modification, it can be extended to the analysis of fractional Gaussian noises. (C) 2015 Elsevier B.V. All rights reserved. |
id |
UNSP_91294a01e10e785f02ef3b2f3e53a4fd |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/161065 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Hurst exponent estimation of self-affine time series using quantile graphsSelf-affine time seriesHurst exponentComplex networksQuantile graphsIn the context of dynamical systems, time series analysis is frequently used to identify the underlying nature of a phenomenon of interest from a sequence of observations. For signals with a self-affine structure, like fractional Brownian motions (fBm), the Hurst exponent H is one of the key parameters. Here, the use of quantile graphs (QGs) for the estimation of H is proposed. A QG is generated by mapping the quantiles of a time series into nodes of a graph. H is then computed directly as the power-law scaling exponent of the mean jump length performed by a random walker on the QG, for different time differences between the time series data points. The QG method for estimating the Hurst exponent was applied to fBm with different H values. Comparison with the exact H values used to generate the motions showed an excellent agreement. For a given time series length, estimation error depends basically on the statistical framework used for determining the exponent of the power-law model. The QG method is numerically simple and has only one free parameter, Q, the number of quantiles/nodes. With a simple modification, it can be extended to the analysis of fractional Gaussian noises. (C) 2015 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Estadual Paulista, Inst Biociencias, Dept Bioestat, Botucatu, SP, BrazilInst Nacl Pesquisas Espaciais, Lab Comp & Matemat Aplicada, BR-12201 Sao Jose Dos Campos, SP, BrazilUniv Estadual Paulista, Inst Biociencias, Dept Bioestat, Botucatu, SP, BrazilFAPESP: 2014/05145-0FAPESP: 2013/19905-3CNPq: 501221/2012-3CNPq: 303437/2012-0Elsevier B.V.Universidade Estadual Paulista (Unesp)Inst Nacl Pesquisas EspaciaisCampanharo, Andriana S. L. O. [UNESP]Ramos, Fernando M.2018-11-26T16:18:59Z2018-11-26T16:18:59Z2016-02-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article43-48application/pdfhttp://dx.doi.org/10.1016/j.physa.2015.09.094Physica A-statistical Mechanics And Its Applications. Amsterdam: Elsevier Science Bv, v. 444, p. 43-48, 2016.0378-4371http://hdl.handle.net/11449/16106510.1016/j.physa.2015.09.094WOS:000366785900005WOS000366785900005.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysica A-statistical Mechanics And Its Applications0,773info:eu-repo/semantics/openAccess2024-01-04T06:27:23Zoai:repositorio.unesp.br:11449/161065Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:07:46.118251Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Hurst exponent estimation of self-affine time series using quantile graphs |
title |
Hurst exponent estimation of self-affine time series using quantile graphs |
spellingShingle |
Hurst exponent estimation of self-affine time series using quantile graphs Campanharo, Andriana S. L. O. [UNESP] Self-affine time series Hurst exponent Complex networks Quantile graphs |
title_short |
Hurst exponent estimation of self-affine time series using quantile graphs |
title_full |
Hurst exponent estimation of self-affine time series using quantile graphs |
title_fullStr |
Hurst exponent estimation of self-affine time series using quantile graphs |
title_full_unstemmed |
Hurst exponent estimation of self-affine time series using quantile graphs |
title_sort |
Hurst exponent estimation of self-affine time series using quantile graphs |
author |
Campanharo, Andriana S. L. O. [UNESP] |
author_facet |
Campanharo, Andriana S. L. O. [UNESP] Ramos, Fernando M. |
author_role |
author |
author2 |
Ramos, Fernando M. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Inst Nacl Pesquisas Espaciais |
dc.contributor.author.fl_str_mv |
Campanharo, Andriana S. L. O. [UNESP] Ramos, Fernando M. |
dc.subject.por.fl_str_mv |
Self-affine time series Hurst exponent Complex networks Quantile graphs |
topic |
Self-affine time series Hurst exponent Complex networks Quantile graphs |
description |
In the context of dynamical systems, time series analysis is frequently used to identify the underlying nature of a phenomenon of interest from a sequence of observations. For signals with a self-affine structure, like fractional Brownian motions (fBm), the Hurst exponent H is one of the key parameters. Here, the use of quantile graphs (QGs) for the estimation of H is proposed. A QG is generated by mapping the quantiles of a time series into nodes of a graph. H is then computed directly as the power-law scaling exponent of the mean jump length performed by a random walker on the QG, for different time differences between the time series data points. The QG method for estimating the Hurst exponent was applied to fBm with different H values. Comparison with the exact H values used to generate the motions showed an excellent agreement. For a given time series length, estimation error depends basically on the statistical framework used for determining the exponent of the power-law model. The QG method is numerically simple and has only one free parameter, Q, the number of quantiles/nodes. With a simple modification, it can be extended to the analysis of fractional Gaussian noises. (C) 2015 Elsevier B.V. All rights reserved. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-02-15 2018-11-26T16:18:59Z 2018-11-26T16:18:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.physa.2015.09.094 Physica A-statistical Mechanics And Its Applications. Amsterdam: Elsevier Science Bv, v. 444, p. 43-48, 2016. 0378-4371 http://hdl.handle.net/11449/161065 10.1016/j.physa.2015.09.094 WOS:000366785900005 WOS000366785900005.pdf |
url |
http://dx.doi.org/10.1016/j.physa.2015.09.094 http://hdl.handle.net/11449/161065 |
identifier_str_mv |
Physica A-statistical Mechanics And Its Applications. Amsterdam: Elsevier Science Bv, v. 444, p. 43-48, 2016. 0378-4371 10.1016/j.physa.2015.09.094 WOS:000366785900005 WOS000366785900005.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physica A-statistical Mechanics And Its Applications 0,773 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
43-48 application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129394725617664 |