Hurst exponent estimation of self-affine time series using quantile graphs

Detalhes bibliográficos
Autor(a) principal: Campanharo, Andriana S. L. O. [UNESP]
Data de Publicação: 2016
Outros Autores: Ramos, Fernando M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.physa.2015.09.094
http://hdl.handle.net/11449/161065
Resumo: In the context of dynamical systems, time series analysis is frequently used to identify the underlying nature of a phenomenon of interest from a sequence of observations. For signals with a self-affine structure, like fractional Brownian motions (fBm), the Hurst exponent H is one of the key parameters. Here, the use of quantile graphs (QGs) for the estimation of H is proposed. A QG is generated by mapping the quantiles of a time series into nodes of a graph. H is then computed directly as the power-law scaling exponent of the mean jump length performed by a random walker on the QG, for different time differences between the time series data points. The QG method for estimating the Hurst exponent was applied to fBm with different H values. Comparison with the exact H values used to generate the motions showed an excellent agreement. For a given time series length, estimation error depends basically on the statistical framework used for determining the exponent of the power-law model. The QG method is numerically simple and has only one free parameter, Q, the number of quantiles/nodes. With a simple modification, it can be extended to the analysis of fractional Gaussian noises. (C) 2015 Elsevier B.V. All rights reserved.
id UNSP_91294a01e10e785f02ef3b2f3e53a4fd
oai_identifier_str oai:repositorio.unesp.br:11449/161065
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Hurst exponent estimation of self-affine time series using quantile graphsSelf-affine time seriesHurst exponentComplex networksQuantile graphsIn the context of dynamical systems, time series analysis is frequently used to identify the underlying nature of a phenomenon of interest from a sequence of observations. For signals with a self-affine structure, like fractional Brownian motions (fBm), the Hurst exponent H is one of the key parameters. Here, the use of quantile graphs (QGs) for the estimation of H is proposed. A QG is generated by mapping the quantiles of a time series into nodes of a graph. H is then computed directly as the power-law scaling exponent of the mean jump length performed by a random walker on the QG, for different time differences between the time series data points. The QG method for estimating the Hurst exponent was applied to fBm with different H values. Comparison with the exact H values used to generate the motions showed an excellent agreement. For a given time series length, estimation error depends basically on the statistical framework used for determining the exponent of the power-law model. The QG method is numerically simple and has only one free parameter, Q, the number of quantiles/nodes. With a simple modification, it can be extended to the analysis of fractional Gaussian noises. (C) 2015 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Estadual Paulista, Inst Biociencias, Dept Bioestat, Botucatu, SP, BrazilInst Nacl Pesquisas Espaciais, Lab Comp & Matemat Aplicada, BR-12201 Sao Jose Dos Campos, SP, BrazilUniv Estadual Paulista, Inst Biociencias, Dept Bioestat, Botucatu, SP, BrazilFAPESP: 2014/05145-0FAPESP: 2013/19905-3CNPq: 501221/2012-3CNPq: 303437/2012-0Elsevier B.V.Universidade Estadual Paulista (Unesp)Inst Nacl Pesquisas EspaciaisCampanharo, Andriana S. L. O. [UNESP]Ramos, Fernando M.2018-11-26T16:18:59Z2018-11-26T16:18:59Z2016-02-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article43-48application/pdfhttp://dx.doi.org/10.1016/j.physa.2015.09.094Physica A-statistical Mechanics And Its Applications. Amsterdam: Elsevier Science Bv, v. 444, p. 43-48, 2016.0378-4371http://hdl.handle.net/11449/16106510.1016/j.physa.2015.09.094WOS:000366785900005WOS000366785900005.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysica A-statistical Mechanics And Its Applications0,773info:eu-repo/semantics/openAccess2024-01-04T06:27:23Zoai:repositorio.unesp.br:11449/161065Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:07:46.118251Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Hurst exponent estimation of self-affine time series using quantile graphs
title Hurst exponent estimation of self-affine time series using quantile graphs
spellingShingle Hurst exponent estimation of self-affine time series using quantile graphs
Campanharo, Andriana S. L. O. [UNESP]
Self-affine time series
Hurst exponent
Complex networks
Quantile graphs
title_short Hurst exponent estimation of self-affine time series using quantile graphs
title_full Hurst exponent estimation of self-affine time series using quantile graphs
title_fullStr Hurst exponent estimation of self-affine time series using quantile graphs
title_full_unstemmed Hurst exponent estimation of self-affine time series using quantile graphs
title_sort Hurst exponent estimation of self-affine time series using quantile graphs
author Campanharo, Andriana S. L. O. [UNESP]
author_facet Campanharo, Andriana S. L. O. [UNESP]
Ramos, Fernando M.
author_role author
author2 Ramos, Fernando M.
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Inst Nacl Pesquisas Espaciais
dc.contributor.author.fl_str_mv Campanharo, Andriana S. L. O. [UNESP]
Ramos, Fernando M.
dc.subject.por.fl_str_mv Self-affine time series
Hurst exponent
Complex networks
Quantile graphs
topic Self-affine time series
Hurst exponent
Complex networks
Quantile graphs
description In the context of dynamical systems, time series analysis is frequently used to identify the underlying nature of a phenomenon of interest from a sequence of observations. For signals with a self-affine structure, like fractional Brownian motions (fBm), the Hurst exponent H is one of the key parameters. Here, the use of quantile graphs (QGs) for the estimation of H is proposed. A QG is generated by mapping the quantiles of a time series into nodes of a graph. H is then computed directly as the power-law scaling exponent of the mean jump length performed by a random walker on the QG, for different time differences between the time series data points. The QG method for estimating the Hurst exponent was applied to fBm with different H values. Comparison with the exact H values used to generate the motions showed an excellent agreement. For a given time series length, estimation error depends basically on the statistical framework used for determining the exponent of the power-law model. The QG method is numerically simple and has only one free parameter, Q, the number of quantiles/nodes. With a simple modification, it can be extended to the analysis of fractional Gaussian noises. (C) 2015 Elsevier B.V. All rights reserved.
publishDate 2016
dc.date.none.fl_str_mv 2016-02-15
2018-11-26T16:18:59Z
2018-11-26T16:18:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.physa.2015.09.094
Physica A-statistical Mechanics And Its Applications. Amsterdam: Elsevier Science Bv, v. 444, p. 43-48, 2016.
0378-4371
http://hdl.handle.net/11449/161065
10.1016/j.physa.2015.09.094
WOS:000366785900005
WOS000366785900005.pdf
url http://dx.doi.org/10.1016/j.physa.2015.09.094
http://hdl.handle.net/11449/161065
identifier_str_mv Physica A-statistical Mechanics And Its Applications. Amsterdam: Elsevier Science Bv, v. 444, p. 43-48, 2016.
0378-4371
10.1016/j.physa.2015.09.094
WOS:000366785900005
WOS000366785900005.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physica A-statistical Mechanics And Its Applications
0,773
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 43-48
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129394725617664