Quantile graphs for the characterization of chaotic dynamics in time series

Detalhes bibliográficos
Autor(a) principal: Lopes de Oliveira Campanharo, Andriana Susana [UNESP]
Data de Publicação: 2015
Outros Autores: Ramos, Fernando Manuel, Essaaidi, M., Nemiche, M.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/159506
Resumo: Recently, a map from time series to networks with an approximate inverse operation has been proposed [1], allowing the use network statistics to characterize time series and time series statistics to characterize networks. In this approach, time series quantiles are mapped into nodes of a graph [1], [2]. Here we show these quantile graphs (QGs) are able to characterize features such as long range correlations or deterministic chaos present in the underlying dynamics of the original signal, making them a powerful tool for the analysis of nonlinear systems. As an illustration we applied the QG method to the Logistic and the Quadratic maps, for varying values of their control parameters. We show that in both cases the main features of resulting bifurcation cascades, with their progressive transition from periodic behavior to chaos, are well captured by the topology of QGs.
id UNSP_cef7967779772c0fdb9e6faac89d4bb9
oai_identifier_str oai:repositorio.unesp.br:11449/159506
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Quantile graphs for the characterization of chaotic dynamics in time seriesNonlinear Time SeriesChaotic SystemQuantile GraphsComplex NetworksRecently, a map from time series to networks with an approximate inverse operation has been proposed [1], allowing the use network statistics to characterize time series and time series statistics to characterize networks. In this approach, time series quantiles are mapped into nodes of a graph [1], [2]. Here we show these quantile graphs (QGs) are able to characterize features such as long range correlations or deterministic chaos present in the underlying dynamics of the original signal, making them a powerful tool for the analysis of nonlinear systems. As an illustration we applied the QG method to the Logistic and the Quadratic maps, for varying values of their control parameters. We show that in both cases the main features of resulting bifurcation cascades, with their progressive transition from periodic behavior to chaos, are well captured by the topology of QGs.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Estadual Paulista, Inst Biociencias, Dept Bioestat, BR-18603560 Sao Paulo, BrazilInst Nacl Pesquisas Espaciais, Lab Comp & Matemat Aplicada, BR-30332025 Sao Paulo, BrazilUniv Estadual Paulista, Inst Biociencias, Dept Bioestat, BR-18603560 Sao Paulo, BrazilFAPESP: 2014/05145-0FAPESP: 2013/19905-3IeeeUniversidade Estadual Paulista (Unesp)Inst Nacl Pesquisas EspaciaisLopes de Oliveira Campanharo, Andriana Susana [UNESP]Ramos, Fernando ManuelEssaaidi, M.Nemiche, M.2018-11-26T15:44:05Z2018-11-26T15:44:05Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject4Proceedings Of 2015 Third Ieee World Conference On Complex Systems (wccs). New York: Ieee, 4 p., 2015.http://hdl.handle.net/11449/159506WOS:000399131300092Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings Of 2015 Third Ieee World Conference On Complex Systems (wccs)info:eu-repo/semantics/openAccess2021-10-23T21:47:04Zoai:repositorio.unesp.br:11449/159506Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:39:35.094901Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Quantile graphs for the characterization of chaotic dynamics in time series
title Quantile graphs for the characterization of chaotic dynamics in time series
spellingShingle Quantile graphs for the characterization of chaotic dynamics in time series
Lopes de Oliveira Campanharo, Andriana Susana [UNESP]
Nonlinear Time Series
Chaotic System
Quantile Graphs
Complex Networks
title_short Quantile graphs for the characterization of chaotic dynamics in time series
title_full Quantile graphs for the characterization of chaotic dynamics in time series
title_fullStr Quantile graphs for the characterization of chaotic dynamics in time series
title_full_unstemmed Quantile graphs for the characterization of chaotic dynamics in time series
title_sort Quantile graphs for the characterization of chaotic dynamics in time series
author Lopes de Oliveira Campanharo, Andriana Susana [UNESP]
author_facet Lopes de Oliveira Campanharo, Andriana Susana [UNESP]
Ramos, Fernando Manuel
Essaaidi, M.
Nemiche, M.
author_role author
author2 Ramos, Fernando Manuel
Essaaidi, M.
Nemiche, M.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Inst Nacl Pesquisas Espaciais
dc.contributor.author.fl_str_mv Lopes de Oliveira Campanharo, Andriana Susana [UNESP]
Ramos, Fernando Manuel
Essaaidi, M.
Nemiche, M.
dc.subject.por.fl_str_mv Nonlinear Time Series
Chaotic System
Quantile Graphs
Complex Networks
topic Nonlinear Time Series
Chaotic System
Quantile Graphs
Complex Networks
description Recently, a map from time series to networks with an approximate inverse operation has been proposed [1], allowing the use network statistics to characterize time series and time series statistics to characterize networks. In this approach, time series quantiles are mapped into nodes of a graph [1], [2]. Here we show these quantile graphs (QGs) are able to characterize features such as long range correlations or deterministic chaos present in the underlying dynamics of the original signal, making them a powerful tool for the analysis of nonlinear systems. As an illustration we applied the QG method to the Logistic and the Quadratic maps, for varying values of their control parameters. We show that in both cases the main features of resulting bifurcation cascades, with their progressive transition from periodic behavior to chaos, are well captured by the topology of QGs.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-01
2018-11-26T15:44:05Z
2018-11-26T15:44:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv Proceedings Of 2015 Third Ieee World Conference On Complex Systems (wccs). New York: Ieee, 4 p., 2015.
http://hdl.handle.net/11449/159506
WOS:000399131300092
identifier_str_mv Proceedings Of 2015 Third Ieee World Conference On Complex Systems (wccs). New York: Ieee, 4 p., 2015.
WOS:000399131300092
url http://hdl.handle.net/11449/159506
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings Of 2015 Third Ieee World Conference On Complex Systems (wccs)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 4
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128840554250240