Quantile graphs for the characterization of chaotic dynamics in time series
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/159506 |
Resumo: | Recently, a map from time series to networks with an approximate inverse operation has been proposed [1], allowing the use network statistics to characterize time series and time series statistics to characterize networks. In this approach, time series quantiles are mapped into nodes of a graph [1], [2]. Here we show these quantile graphs (QGs) are able to characterize features such as long range correlations or deterministic chaos present in the underlying dynamics of the original signal, making them a powerful tool for the analysis of nonlinear systems. As an illustration we applied the QG method to the Logistic and the Quadratic maps, for varying values of their control parameters. We show that in both cases the main features of resulting bifurcation cascades, with their progressive transition from periodic behavior to chaos, are well captured by the topology of QGs. |
id |
UNSP_cef7967779772c0fdb9e6faac89d4bb9 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/159506 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Quantile graphs for the characterization of chaotic dynamics in time seriesNonlinear Time SeriesChaotic SystemQuantile GraphsComplex NetworksRecently, a map from time series to networks with an approximate inverse operation has been proposed [1], allowing the use network statistics to characterize time series and time series statistics to characterize networks. In this approach, time series quantiles are mapped into nodes of a graph [1], [2]. Here we show these quantile graphs (QGs) are able to characterize features such as long range correlations or deterministic chaos present in the underlying dynamics of the original signal, making them a powerful tool for the analysis of nonlinear systems. As an illustration we applied the QG method to the Logistic and the Quadratic maps, for varying values of their control parameters. We show that in both cases the main features of resulting bifurcation cascades, with their progressive transition from periodic behavior to chaos, are well captured by the topology of QGs.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Estadual Paulista, Inst Biociencias, Dept Bioestat, BR-18603560 Sao Paulo, BrazilInst Nacl Pesquisas Espaciais, Lab Comp & Matemat Aplicada, BR-30332025 Sao Paulo, BrazilUniv Estadual Paulista, Inst Biociencias, Dept Bioestat, BR-18603560 Sao Paulo, BrazilFAPESP: 2014/05145-0FAPESP: 2013/19905-3IeeeUniversidade Estadual Paulista (Unesp)Inst Nacl Pesquisas EspaciaisLopes de Oliveira Campanharo, Andriana Susana [UNESP]Ramos, Fernando ManuelEssaaidi, M.Nemiche, M.2018-11-26T15:44:05Z2018-11-26T15:44:05Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject4Proceedings Of 2015 Third Ieee World Conference On Complex Systems (wccs). New York: Ieee, 4 p., 2015.http://hdl.handle.net/11449/159506WOS:000399131300092Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings Of 2015 Third Ieee World Conference On Complex Systems (wccs)info:eu-repo/semantics/openAccess2021-10-23T21:47:04Zoai:repositorio.unesp.br:11449/159506Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:39:35.094901Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Quantile graphs for the characterization of chaotic dynamics in time series |
title |
Quantile graphs for the characterization of chaotic dynamics in time series |
spellingShingle |
Quantile graphs for the characterization of chaotic dynamics in time series Lopes de Oliveira Campanharo, Andriana Susana [UNESP] Nonlinear Time Series Chaotic System Quantile Graphs Complex Networks |
title_short |
Quantile graphs for the characterization of chaotic dynamics in time series |
title_full |
Quantile graphs for the characterization of chaotic dynamics in time series |
title_fullStr |
Quantile graphs for the characterization of chaotic dynamics in time series |
title_full_unstemmed |
Quantile graphs for the characterization of chaotic dynamics in time series |
title_sort |
Quantile graphs for the characterization of chaotic dynamics in time series |
author |
Lopes de Oliveira Campanharo, Andriana Susana [UNESP] |
author_facet |
Lopes de Oliveira Campanharo, Andriana Susana [UNESP] Ramos, Fernando Manuel Essaaidi, M. Nemiche, M. |
author_role |
author |
author2 |
Ramos, Fernando Manuel Essaaidi, M. Nemiche, M. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Inst Nacl Pesquisas Espaciais |
dc.contributor.author.fl_str_mv |
Lopes de Oliveira Campanharo, Andriana Susana [UNESP] Ramos, Fernando Manuel Essaaidi, M. Nemiche, M. |
dc.subject.por.fl_str_mv |
Nonlinear Time Series Chaotic System Quantile Graphs Complex Networks |
topic |
Nonlinear Time Series Chaotic System Quantile Graphs Complex Networks |
description |
Recently, a map from time series to networks with an approximate inverse operation has been proposed [1], allowing the use network statistics to characterize time series and time series statistics to characterize networks. In this approach, time series quantiles are mapped into nodes of a graph [1], [2]. Here we show these quantile graphs (QGs) are able to characterize features such as long range correlations or deterministic chaos present in the underlying dynamics of the original signal, making them a powerful tool for the analysis of nonlinear systems. As an illustration we applied the QG method to the Logistic and the Quadratic maps, for varying values of their control parameters. We show that in both cases the main features of resulting bifurcation cascades, with their progressive transition from periodic behavior to chaos, are well captured by the topology of QGs. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-01 2018-11-26T15:44:05Z 2018-11-26T15:44:05Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Proceedings Of 2015 Third Ieee World Conference On Complex Systems (wccs). New York: Ieee, 4 p., 2015. http://hdl.handle.net/11449/159506 WOS:000399131300092 |
identifier_str_mv |
Proceedings Of 2015 Third Ieee World Conference On Complex Systems (wccs). New York: Ieee, 4 p., 2015. WOS:000399131300092 |
url |
http://hdl.handle.net/11449/159506 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings Of 2015 Third Ieee World Conference On Complex Systems (wccs) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
4 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128840554250240 |