Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Pedro Trombini [UNESP]
Data de Publicação: 2021
Outros Autores: Lemos, Diego Magela, Pagani Júnior, Carlos do Carmo [UNESP], Sampaio, Daniel Souza [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/235009
Resumo: Due to rotational effects, the observed load of inboard sections of rotary wings is consistently higher than the load predicted based on the two-dimensional aerodynamic behavior of the corresponding airfoil in linear motion. Therefore, engineering methods used to analyze and optimize the aerodynamics of horizontal-axis wind turbines (HAWT) rely on corrections to 2D airfoil data. Since the physics associated with the phenomenon is not fully understood, the correction models have to resort to empirically determined parameters. It is important to stress that a great scattering of the turbine power predictions based on different correction models is observed for conditions of high blade load. We propose a methodology to predict the load on HAWT blades based on the widely applied blade element momentum (BEM) method that does not rely on the correction of 2D polar curves. In the proposed methodology, the force coefficients are stored in the lookup table and consulted by the BEM algorithm, not only as function of the angle of attack but also as function of the chord-to-radius ratio and the local Rossby number. The data of the lookup table is provided by the measurements of the unsteady aerodynamic experiment Phase-VI, coordinated by the United States' National Renewable Energy Laboratory and conducted in a 24.4m × 36.6m wind tunnel in NASA Ames Research Center. Compared to a well accepted correction model, the proposed methodology predict the load radial distribution with greater accuracy for relatively high wind speeds.
id UNSP_919507808bc1d2a76ae53c0dff498a42
oai_identifier_str oai:repositorio.unesp.br:11449/235009
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Blade Element Momentum simulations using polars extracted from wind-turbine-model experimentsSimulações do método Blade Element Momentum usando polares extraídas a partir de experimentos de modelo de turbina eólicaComputational fluid dynamicsTurbulent boundary layerEnergia eólicaAerodinâmicaFluidodinâmica computacionalCamada limite turbulentaDue to rotational effects, the observed load of inboard sections of rotary wings is consistently higher than the load predicted based on the two-dimensional aerodynamic behavior of the corresponding airfoil in linear motion. Therefore, engineering methods used to analyze and optimize the aerodynamics of horizontal-axis wind turbines (HAWT) rely on corrections to 2D airfoil data. Since the physics associated with the phenomenon is not fully understood, the correction models have to resort to empirically determined parameters. It is important to stress that a great scattering of the turbine power predictions based on different correction models is observed for conditions of high blade load. We propose a methodology to predict the load on HAWT blades based on the widely applied blade element momentum (BEM) method that does not rely on the correction of 2D polar curves. In the proposed methodology, the force coefficients are stored in the lookup table and consulted by the BEM algorithm, not only as function of the angle of attack but also as function of the chord-to-radius ratio and the local Rossby number. The data of the lookup table is provided by the measurements of the unsteady aerodynamic experiment Phase-VI, coordinated by the United States' National Renewable Energy Laboratory and conducted in a 24.4m × 36.6m wind tunnel in NASA Ames Research Center. Compared to a well accepted correction model, the proposed methodology predict the load radial distribution with greater accuracy for relatively high wind speeds.Devido aos efeitos rotacionais, o carregamento observado de seções mais próximas à raiz de asas rotativas é consistentemente maior do que a carga prevista baseada no comportamento aerodinâmico bidimensional do aerofólio correspondente em movimento linear. Portanto, métodos de engenharia usados para analisar e otimizar a aerodinâmica de turbinas eólicas de eixo horizontal (HAWT) dependem de correções para dados de aerofólio 2D. Uma vez que a física associada com o fenômeno não é completamente compreendida, os modelos de correção têm que recorrer a parâmetros determinados empiricamente. É importante enfatizar que uma grande variabilidade das previsões de potência de turbina baseadas em diferentes modelos de correção é observada para condições de elevado carregamento na pá. Propomos uma metodologia para prever o carregamento nas pás de HAWT baseada no amplamente aplicado método blade element momentum (BEM) que não dependa da correção de curvas polares 2D. Na metodologia proposta, os coeficientes de força são armazenados na tabela de consulta e consultados pelo algoritmo BEM, não apenas como função do ângulo de ataque, mas também como função da razão entre a corda e a posição radial e do número de Rossby local. Os dados da tabela de consulta são fornecidos por meio das medidas do experimento aerodinâmico em regime transiente Phase-VI, coordenado pelo laboratório nacional estadunidense de energias renováveis e conduzido em um túnel de vento de 24,4m × 36,6m no Centro de Pesquisa NASA Ames. Comparado a um modelo de correção bem aceito, a metodologia proposta previu a distribuição radial de carregamento com maior acurácia para velocidades do vento relativamente elevadas.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Versão final do editorUniversidade Estadual Paulista (Unesp), Faculdade de Engenharia de São João da Boa VistaUniversidade de São Paulo, Escola de Engenharia de São CarlosFAPESP: 20/10972-3ABCMUniversidade Estadual Paulista (Unesp)Rodrigues, Pedro Trombini [UNESP]Lemos, Diego MagelaPagani Júnior, Carlos do Carmo [UNESP]Sampaio, Daniel Souza [UNESP]2022-06-03T11:54:32Z2022-06-03T11:54:32Z2021-11-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfINTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 26., 2021http://hdl.handle.net/11449/23500910.26678/ABCM.COBEM2021.COB2021-09594793283475197340557653297430223965729707453921490000-0002-0756-58000000-0001-8900-19390000-0002-2350-4768enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-08-06T13:24:15Zoai:repositorio.unesp.br:11449/235009Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T13:24:15Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments
Simulações do método Blade Element Momentum usando polares extraídas a partir de experimentos de modelo de turbina eólica
title Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments
spellingShingle Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments
Rodrigues, Pedro Trombini [UNESP]
Computational fluid dynamics
Turbulent boundary layer
Energia eólica
Aerodinâmica
Fluidodinâmica computacional
Camada limite turbulenta
title_short Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments
title_full Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments
title_fullStr Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments
title_full_unstemmed Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments
title_sort Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments
author Rodrigues, Pedro Trombini [UNESP]
author_facet Rodrigues, Pedro Trombini [UNESP]
Lemos, Diego Magela
Pagani Júnior, Carlos do Carmo [UNESP]
Sampaio, Daniel Souza [UNESP]
author_role author
author2 Lemos, Diego Magela
Pagani Júnior, Carlos do Carmo [UNESP]
Sampaio, Daniel Souza [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Rodrigues, Pedro Trombini [UNESP]
Lemos, Diego Magela
Pagani Júnior, Carlos do Carmo [UNESP]
Sampaio, Daniel Souza [UNESP]
dc.subject.por.fl_str_mv Computational fluid dynamics
Turbulent boundary layer
Energia eólica
Aerodinâmica
Fluidodinâmica computacional
Camada limite turbulenta
topic Computational fluid dynamics
Turbulent boundary layer
Energia eólica
Aerodinâmica
Fluidodinâmica computacional
Camada limite turbulenta
description Due to rotational effects, the observed load of inboard sections of rotary wings is consistently higher than the load predicted based on the two-dimensional aerodynamic behavior of the corresponding airfoil in linear motion. Therefore, engineering methods used to analyze and optimize the aerodynamics of horizontal-axis wind turbines (HAWT) rely on corrections to 2D airfoil data. Since the physics associated with the phenomenon is not fully understood, the correction models have to resort to empirically determined parameters. It is important to stress that a great scattering of the turbine power predictions based on different correction models is observed for conditions of high blade load. We propose a methodology to predict the load on HAWT blades based on the widely applied blade element momentum (BEM) method that does not rely on the correction of 2D polar curves. In the proposed methodology, the force coefficients are stored in the lookup table and consulted by the BEM algorithm, not only as function of the angle of attack but also as function of the chord-to-radius ratio and the local Rossby number. The data of the lookup table is provided by the measurements of the unsteady aerodynamic experiment Phase-VI, coordinated by the United States' National Renewable Energy Laboratory and conducted in a 24.4m × 36.6m wind tunnel in NASA Ames Research Center. Compared to a well accepted correction model, the proposed methodology predict the load radial distribution with greater accuracy for relatively high wind speeds.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-22
2022-06-03T11:54:32Z
2022-06-03T11:54:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 26., 2021
http://hdl.handle.net/11449/235009
10.26678/ABCM.COBEM2021.COB2021-0959
4793283475197340
5576532974302239
6572970745392149
0000-0002-0756-5800
0000-0001-8900-1939
0000-0002-2350-4768
identifier_str_mv INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 26., 2021
10.26678/ABCM.COBEM2021.COB2021-0959
4793283475197340
5576532974302239
6572970745392149
0000-0002-0756-5800
0000-0001-8900-1939
0000-0002-2350-4768
url http://hdl.handle.net/11449/235009
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv ABCM
publisher.none.fl_str_mv ABCM
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128139541348352