Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/235009 |
Resumo: | Due to rotational effects, the observed load of inboard sections of rotary wings is consistently higher than the load predicted based on the two-dimensional aerodynamic behavior of the corresponding airfoil in linear motion. Therefore, engineering methods used to analyze and optimize the aerodynamics of horizontal-axis wind turbines (HAWT) rely on corrections to 2D airfoil data. Since the physics associated with the phenomenon is not fully understood, the correction models have to resort to empirically determined parameters. It is important to stress that a great scattering of the turbine power predictions based on different correction models is observed for conditions of high blade load. We propose a methodology to predict the load on HAWT blades based on the widely applied blade element momentum (BEM) method that does not rely on the correction of 2D polar curves. In the proposed methodology, the force coefficients are stored in the lookup table and consulted by the BEM algorithm, not only as function of the angle of attack but also as function of the chord-to-radius ratio and the local Rossby number. The data of the lookup table is provided by the measurements of the unsteady aerodynamic experiment Phase-VI, coordinated by the United States' National Renewable Energy Laboratory and conducted in a 24.4m × 36.6m wind tunnel in NASA Ames Research Center. Compared to a well accepted correction model, the proposed methodology predict the load radial distribution with greater accuracy for relatively high wind speeds. |
id |
UNSP_919507808bc1d2a76ae53c0dff498a42 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/235009 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Blade Element Momentum simulations using polars extracted from wind-turbine-model experimentsSimulações do método Blade Element Momentum usando polares extraídas a partir de experimentos de modelo de turbina eólicaComputational fluid dynamicsTurbulent boundary layerEnergia eólicaAerodinâmicaFluidodinâmica computacionalCamada limite turbulentaDue to rotational effects, the observed load of inboard sections of rotary wings is consistently higher than the load predicted based on the two-dimensional aerodynamic behavior of the corresponding airfoil in linear motion. Therefore, engineering methods used to analyze and optimize the aerodynamics of horizontal-axis wind turbines (HAWT) rely on corrections to 2D airfoil data. Since the physics associated with the phenomenon is not fully understood, the correction models have to resort to empirically determined parameters. It is important to stress that a great scattering of the turbine power predictions based on different correction models is observed for conditions of high blade load. We propose a methodology to predict the load on HAWT blades based on the widely applied blade element momentum (BEM) method that does not rely on the correction of 2D polar curves. In the proposed methodology, the force coefficients are stored in the lookup table and consulted by the BEM algorithm, not only as function of the angle of attack but also as function of the chord-to-radius ratio and the local Rossby number. The data of the lookup table is provided by the measurements of the unsteady aerodynamic experiment Phase-VI, coordinated by the United States' National Renewable Energy Laboratory and conducted in a 24.4m × 36.6m wind tunnel in NASA Ames Research Center. Compared to a well accepted correction model, the proposed methodology predict the load radial distribution with greater accuracy for relatively high wind speeds.Devido aos efeitos rotacionais, o carregamento observado de seções mais próximas à raiz de asas rotativas é consistentemente maior do que a carga prevista baseada no comportamento aerodinâmico bidimensional do aerofólio correspondente em movimento linear. Portanto, métodos de engenharia usados para analisar e otimizar a aerodinâmica de turbinas eólicas de eixo horizontal (HAWT) dependem de correções para dados de aerofólio 2D. Uma vez que a física associada com o fenômeno não é completamente compreendida, os modelos de correção têm que recorrer a parâmetros determinados empiricamente. É importante enfatizar que uma grande variabilidade das previsões de potência de turbina baseadas em diferentes modelos de correção é observada para condições de elevado carregamento na pá. Propomos uma metodologia para prever o carregamento nas pás de HAWT baseada no amplamente aplicado método blade element momentum (BEM) que não dependa da correção de curvas polares 2D. Na metodologia proposta, os coeficientes de força são armazenados na tabela de consulta e consultados pelo algoritmo BEM, não apenas como função do ângulo de ataque, mas também como função da razão entre a corda e a posição radial e do número de Rossby local. Os dados da tabela de consulta são fornecidos por meio das medidas do experimento aerodinâmico em regime transiente Phase-VI, coordenado pelo laboratório nacional estadunidense de energias renováveis e conduzido em um túnel de vento de 24,4m × 36,6m no Centro de Pesquisa NASA Ames. Comparado a um modelo de correção bem aceito, a metodologia proposta previu a distribuição radial de carregamento com maior acurácia para velocidades do vento relativamente elevadas.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Versão final do editorUniversidade Estadual Paulista (Unesp), Faculdade de Engenharia de São João da Boa VistaUniversidade de São Paulo, Escola de Engenharia de São CarlosFAPESP: 20/10972-3ABCMUniversidade Estadual Paulista (Unesp)Rodrigues, Pedro Trombini [UNESP]Lemos, Diego MagelaPagani Júnior, Carlos do Carmo [UNESP]Sampaio, Daniel Souza [UNESP]2022-06-03T11:54:32Z2022-06-03T11:54:32Z2021-11-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfINTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 26., 2021http://hdl.handle.net/11449/23500910.26678/ABCM.COBEM2021.COB2021-09594793283475197340557653297430223965729707453921490000-0002-0756-58000000-0001-8900-19390000-0002-2350-4768enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-08-06T13:24:15Zoai:repositorio.unesp.br:11449/235009Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T13:24:15Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments Simulações do método Blade Element Momentum usando polares extraídas a partir de experimentos de modelo de turbina eólica |
title |
Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments |
spellingShingle |
Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments Rodrigues, Pedro Trombini [UNESP] Computational fluid dynamics Turbulent boundary layer Energia eólica Aerodinâmica Fluidodinâmica computacional Camada limite turbulenta |
title_short |
Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments |
title_full |
Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments |
title_fullStr |
Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments |
title_full_unstemmed |
Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments |
title_sort |
Blade Element Momentum simulations using polars extracted from wind-turbine-model experiments |
author |
Rodrigues, Pedro Trombini [UNESP] |
author_facet |
Rodrigues, Pedro Trombini [UNESP] Lemos, Diego Magela Pagani Júnior, Carlos do Carmo [UNESP] Sampaio, Daniel Souza [UNESP] |
author_role |
author |
author2 |
Lemos, Diego Magela Pagani Júnior, Carlos do Carmo [UNESP] Sampaio, Daniel Souza [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Rodrigues, Pedro Trombini [UNESP] Lemos, Diego Magela Pagani Júnior, Carlos do Carmo [UNESP] Sampaio, Daniel Souza [UNESP] |
dc.subject.por.fl_str_mv |
Computational fluid dynamics Turbulent boundary layer Energia eólica Aerodinâmica Fluidodinâmica computacional Camada limite turbulenta |
topic |
Computational fluid dynamics Turbulent boundary layer Energia eólica Aerodinâmica Fluidodinâmica computacional Camada limite turbulenta |
description |
Due to rotational effects, the observed load of inboard sections of rotary wings is consistently higher than the load predicted based on the two-dimensional aerodynamic behavior of the corresponding airfoil in linear motion. Therefore, engineering methods used to analyze and optimize the aerodynamics of horizontal-axis wind turbines (HAWT) rely on corrections to 2D airfoil data. Since the physics associated with the phenomenon is not fully understood, the correction models have to resort to empirically determined parameters. It is important to stress that a great scattering of the turbine power predictions based on different correction models is observed for conditions of high blade load. We propose a methodology to predict the load on HAWT blades based on the widely applied blade element momentum (BEM) method that does not rely on the correction of 2D polar curves. In the proposed methodology, the force coefficients are stored in the lookup table and consulted by the BEM algorithm, not only as function of the angle of attack but also as function of the chord-to-radius ratio and the local Rossby number. The data of the lookup table is provided by the measurements of the unsteady aerodynamic experiment Phase-VI, coordinated by the United States' National Renewable Energy Laboratory and conducted in a 24.4m × 36.6m wind tunnel in NASA Ames Research Center. Compared to a well accepted correction model, the proposed methodology predict the load radial distribution with greater accuracy for relatively high wind speeds. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-22 2022-06-03T11:54:32Z 2022-06-03T11:54:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 26., 2021 http://hdl.handle.net/11449/235009 10.26678/ABCM.COBEM2021.COB2021-0959 4793283475197340 5576532974302239 6572970745392149 0000-0002-0756-5800 0000-0001-8900-1939 0000-0002-2350-4768 |
identifier_str_mv |
INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 26., 2021 10.26678/ABCM.COBEM2021.COB2021-0959 4793283475197340 5576532974302239 6572970745392149 0000-0002-0756-5800 0000-0001-8900-1939 0000-0002-2350-4768 |
url |
http://hdl.handle.net/11449/235009 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
ABCM |
publisher.none.fl_str_mv |
ABCM |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128139541348352 |