Registro não-rígido de imagens médicas usando block-based principal component analysis como camada de pooling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | https://hdl.handle.net/11449/255307 |
Resumo: | O registro não-rígido de imagem é fundamental em muitas tarefas de análise em imagens médicas. O registro não-rígido visa estabelecer correspondências espaciais com o intuito de minimizar as diferenças entre a imagem fixa e a imagem móvel. As técnicas convencionais de registro de imagens, devido à abordagem iterativa, são lentas, mesmo se realizada com as melhores técnicas e com as melhores GPUs. Além disso, possui dificuldades com convergência ou estagnação prematura, principalmente com imagens multimodais. Desta forma, recentemente, foi introduzida na literatura a abordagem de registro de imagem com aprendizado profundo visando resolver os problemas de lentidão, de convergência ou estagnação prematura dos métodos convencionais. Algumas destas novas abordagens são baseadas na rede U-Net, utilizando camadas clássicas de pooling, tal como o Max Pooling, que não consideram a relação espacial para realizar uma compressão mais representativa dos dados. Por outro lado, outras técnicas perdem a relação espacial dos dados, como o uso da análise de componentes principais (PCA) global como pooling. Assim, o presente trabalho tem o objetivo de investigar a utilização da técnica PCA baseada em Blocos (Block-based PCA, i.e., BPCA) como técnica de pooling para ambas as etapas de subamostragem e reconstrução de uma U-Net aplicada ao problema de registro de imagens médicas. A fim de analisar a efetividade desse método, foram realizados experimentos nos conjuntos de dados OASIS e IXI, que são conjuntos de dados de imagens 3D de ressonância magnética ponderadas em T1 do cérebro. Os experimentos revelaram que o BPCA superou o Max Pooling no conjunto de dados IXI e apresentou desempenho equivalente no conjunto de dados de validação do OASIS, apresentando valores inferiores apenas no conjunto de testes do OASIS. Além disso, a combinação dos dois métodos, em que o BPCA é utilizado nas três camadas iniciais de pooling e, na última camada, o Max Pooling, superou os resultados dos outros experimentos na métrica Dice. Assim, com os resultados qualitativos e quantitativos, foi demonstrado que o método BPCA é uma alternativa viável para o registro não-rígido de imagens. |
id |
UNSP_9251686c74e9ffb636658952a8af85f2 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/255307 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Registro não-rígido de imagens médicas usando block-based principal component analysis como camada de poolingNon-rigid registration of medical images using block-based principal component analysis as pooling layerRegistro não-rígido de imagemImagens médicasAprendizado profundoAnálise de componentes principaisBlock-based principal component analysisNon-rigid image registrationMedical imagesDeep learningPrincipal component analysisO registro não-rígido de imagem é fundamental em muitas tarefas de análise em imagens médicas. O registro não-rígido visa estabelecer correspondências espaciais com o intuito de minimizar as diferenças entre a imagem fixa e a imagem móvel. As técnicas convencionais de registro de imagens, devido à abordagem iterativa, são lentas, mesmo se realizada com as melhores técnicas e com as melhores GPUs. Além disso, possui dificuldades com convergência ou estagnação prematura, principalmente com imagens multimodais. Desta forma, recentemente, foi introduzida na literatura a abordagem de registro de imagem com aprendizado profundo visando resolver os problemas de lentidão, de convergência ou estagnação prematura dos métodos convencionais. Algumas destas novas abordagens são baseadas na rede U-Net, utilizando camadas clássicas de pooling, tal como o Max Pooling, que não consideram a relação espacial para realizar uma compressão mais representativa dos dados. Por outro lado, outras técnicas perdem a relação espacial dos dados, como o uso da análise de componentes principais (PCA) global como pooling. Assim, o presente trabalho tem o objetivo de investigar a utilização da técnica PCA baseada em Blocos (Block-based PCA, i.e., BPCA) como técnica de pooling para ambas as etapas de subamostragem e reconstrução de uma U-Net aplicada ao problema de registro de imagens médicas. A fim de analisar a efetividade desse método, foram realizados experimentos nos conjuntos de dados OASIS e IXI, que são conjuntos de dados de imagens 3D de ressonância magnética ponderadas em T1 do cérebro. Os experimentos revelaram que o BPCA superou o Max Pooling no conjunto de dados IXI e apresentou desempenho equivalente no conjunto de dados de validação do OASIS, apresentando valores inferiores apenas no conjunto de testes do OASIS. Além disso, a combinação dos dois métodos, em que o BPCA é utilizado nas três camadas iniciais de pooling e, na última camada, o Max Pooling, superou os resultados dos outros experimentos na métrica Dice. Assim, com os resultados qualitativos e quantitativos, foi demonstrado que o método BPCA é uma alternativa viável para o registro não-rígido de imagens.The non-rigid image registration is fundamental in many tasks of analysis in medical images. Non-rigid registration aims to establish spatial correspondences with the purpose of minimizing differences between the fixed and moving images. Conventional image registration techniques, due to their iterative approach, are slow, even when implemented with the best techniques and GPUs. Moreover, they encounter difficulties with convergence or premature stagnation, particularly with multimodal images. Thus, a recent introduction in the literature is the deep learning-based image registration approach, aiming to address the issues of slowness, convergence, or premature stagnation encountered by conventional methods. Some of these new approaches are based on the U-Net architecture, utilizing classical pooling layers such as Max Pooling, which do not consider spatial relationships for a more representative data compression. On the other hand, other techniques lose the spatial relationship of the data, such as the use of global Principal Component Analysis (PCA) as pooling. Therefore, the present study aims to investigate the use of Block-based PCA (BPCA) as a pooling technique for both downsampling and upsampling stages of a U-Net applied to the medical image registration problem. In order to analyze the effectiveness of this method, experiments were conducted on the OASIS and IXI datasets, which are datasets of 3D T1-weighted brain magnetic resonance images. The experiments revealed that BPCA outperformed Max Pooling in the IXI dataset and showed equivalent performance in the OASIS validation dataset, presenting lower values only in the OASIS test dataset. Furthermore, the combination of both methods, where BPCA is used in the initial three pooling layers and Max Pooling is applied in the final layer, surpassed the results of other experiments in the Dice metric. Thus, with qualitative and quantitative results, it was demonstrated that the BPCA method is a viable alternative for non-rigid image registration.Não recebi financiamentoUniversidade Estadual Paulista (Unesp)Salvadeo, Denis Henrique Pinheiro [UNESP]Pinheiro Junior, Uemerson2024-04-24T12:00:47Z2024-04-24T12:00:47Z2024-03-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/11449/255307porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-04-25T06:02:44Zoai:repositorio.unesp.br:11449/255307Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:42:38.141461Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Registro não-rígido de imagens médicas usando block-based principal component analysis como camada de pooling Non-rigid registration of medical images using block-based principal component analysis as pooling layer |
title |
Registro não-rígido de imagens médicas usando block-based principal component analysis como camada de pooling |
spellingShingle |
Registro não-rígido de imagens médicas usando block-based principal component analysis como camada de pooling Pinheiro Junior, Uemerson Registro não-rígido de imagem Imagens médicas Aprendizado profundo Análise de componentes principais Block-based principal component analysis Non-rigid image registration Medical images Deep learning Principal component analysis |
title_short |
Registro não-rígido de imagens médicas usando block-based principal component analysis como camada de pooling |
title_full |
Registro não-rígido de imagens médicas usando block-based principal component analysis como camada de pooling |
title_fullStr |
Registro não-rígido de imagens médicas usando block-based principal component analysis como camada de pooling |
title_full_unstemmed |
Registro não-rígido de imagens médicas usando block-based principal component analysis como camada de pooling |
title_sort |
Registro não-rígido de imagens médicas usando block-based principal component analysis como camada de pooling |
author |
Pinheiro Junior, Uemerson |
author_facet |
Pinheiro Junior, Uemerson |
author_role |
author |
dc.contributor.none.fl_str_mv |
Salvadeo, Denis Henrique Pinheiro [UNESP] |
dc.contributor.author.fl_str_mv |
Pinheiro Junior, Uemerson |
dc.subject.por.fl_str_mv |
Registro não-rígido de imagem Imagens médicas Aprendizado profundo Análise de componentes principais Block-based principal component analysis Non-rigid image registration Medical images Deep learning Principal component analysis |
topic |
Registro não-rígido de imagem Imagens médicas Aprendizado profundo Análise de componentes principais Block-based principal component analysis Non-rigid image registration Medical images Deep learning Principal component analysis |
description |
O registro não-rígido de imagem é fundamental em muitas tarefas de análise em imagens médicas. O registro não-rígido visa estabelecer correspondências espaciais com o intuito de minimizar as diferenças entre a imagem fixa e a imagem móvel. As técnicas convencionais de registro de imagens, devido à abordagem iterativa, são lentas, mesmo se realizada com as melhores técnicas e com as melhores GPUs. Além disso, possui dificuldades com convergência ou estagnação prematura, principalmente com imagens multimodais. Desta forma, recentemente, foi introduzida na literatura a abordagem de registro de imagem com aprendizado profundo visando resolver os problemas de lentidão, de convergência ou estagnação prematura dos métodos convencionais. Algumas destas novas abordagens são baseadas na rede U-Net, utilizando camadas clássicas de pooling, tal como o Max Pooling, que não consideram a relação espacial para realizar uma compressão mais representativa dos dados. Por outro lado, outras técnicas perdem a relação espacial dos dados, como o uso da análise de componentes principais (PCA) global como pooling. Assim, o presente trabalho tem o objetivo de investigar a utilização da técnica PCA baseada em Blocos (Block-based PCA, i.e., BPCA) como técnica de pooling para ambas as etapas de subamostragem e reconstrução de uma U-Net aplicada ao problema de registro de imagens médicas. A fim de analisar a efetividade desse método, foram realizados experimentos nos conjuntos de dados OASIS e IXI, que são conjuntos de dados de imagens 3D de ressonância magnética ponderadas em T1 do cérebro. Os experimentos revelaram que o BPCA superou o Max Pooling no conjunto de dados IXI e apresentou desempenho equivalente no conjunto de dados de validação do OASIS, apresentando valores inferiores apenas no conjunto de testes do OASIS. Além disso, a combinação dos dois métodos, em que o BPCA é utilizado nas três camadas iniciais de pooling e, na última camada, o Max Pooling, superou os resultados dos outros experimentos na métrica Dice. Assim, com os resultados qualitativos e quantitativos, foi demonstrado que o método BPCA é uma alternativa viável para o registro não-rígido de imagens. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04-24T12:00:47Z 2024-04-24T12:00:47Z 2024-03-04 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/11449/255307 |
url |
https://hdl.handle.net/11449/255307 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128407849926656 |