Geometry of bifurcation sets of generic unfoldings of corank two functions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s00605-021-01607-8 http://hdl.handle.net/11449/229209 |
Resumo: | We study the geometry of bifurcation sets of generic unfoldings of D4±-functions. Taking blow-ups, we show each of the bifurcation sets of D4±-functions admits a parametrization as a surface in R3. Using this parametrization, we investigate the behavior of the Gaussian curvature and the principal curvatures. Furthermore, we investigate the number of ridge curves and subparabolic curves near their singular point. |
id |
UNSP_93607476feef574eec046dd1cb7ef710 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/229209 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Geometry of bifurcation sets of generic unfoldings of corank two functionsBifurcation setCausticsParabolic curvePrincipal curvatureWe study the geometry of bifurcation sets of generic unfoldings of D4±-functions. Taking blow-ups, we show each of the bifurcation sets of D4±-functions admits a parametrization as a surface in R3. Using this parametrization, we investigate the behavior of the Gaussian curvature and the principal curvatures. Furthermore, we investigate the number of ridge curves and subparabolic curves near their singular point.Japan Society for the Promotion of ScienceFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Department of Mathematics Graduate School of Science Kobe University, Rokkodai 1-1, NadaDepartamento de Matemática Ibilce Universidade Estadual Paulista (Unesp), R. Cristóvão Colombo, 2265, Jd NazarethDepartamento de Matemática Ibilce Universidade Estadual Paulista (Unesp), R. Cristóvão Colombo, 2265, Jd NazarethJapan Society for the Promotion of Science: 18K03301FAPESP: 2019/10156-4Kobe UniversityUniversidade Estadual Paulista (UNESP)Saji, Kentarodos Santos, Samuel Paulino [UNESP]2022-04-29T08:31:15Z2022-04-29T08:31:15Z2021-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article553-575http://dx.doi.org/10.1007/s00605-021-01607-8Monatshefte fur Mathematik, v. 196, n. 3, p. 553-575, 2021.0026-9255http://hdl.handle.net/11449/22920910.1007/s00605-021-01607-82-s2.0-85111164596Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMonatshefte fur Mathematikinfo:eu-repo/semantics/openAccess2022-04-29T08:31:15Zoai:repositorio.unesp.br:11449/229209Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:37:55.765047Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Geometry of bifurcation sets of generic unfoldings of corank two functions |
title |
Geometry of bifurcation sets of generic unfoldings of corank two functions |
spellingShingle |
Geometry of bifurcation sets of generic unfoldings of corank two functions Saji, Kentaro Bifurcation set Caustics Parabolic curve Principal curvature |
title_short |
Geometry of bifurcation sets of generic unfoldings of corank two functions |
title_full |
Geometry of bifurcation sets of generic unfoldings of corank two functions |
title_fullStr |
Geometry of bifurcation sets of generic unfoldings of corank two functions |
title_full_unstemmed |
Geometry of bifurcation sets of generic unfoldings of corank two functions |
title_sort |
Geometry of bifurcation sets of generic unfoldings of corank two functions |
author |
Saji, Kentaro |
author_facet |
Saji, Kentaro dos Santos, Samuel Paulino [UNESP] |
author_role |
author |
author2 |
dos Santos, Samuel Paulino [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Kobe University Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Saji, Kentaro dos Santos, Samuel Paulino [UNESP] |
dc.subject.por.fl_str_mv |
Bifurcation set Caustics Parabolic curve Principal curvature |
topic |
Bifurcation set Caustics Parabolic curve Principal curvature |
description |
We study the geometry of bifurcation sets of generic unfoldings of D4±-functions. Taking blow-ups, we show each of the bifurcation sets of D4±-functions admits a parametrization as a surface in R3. Using this parametrization, we investigate the behavior of the Gaussian curvature and the principal curvatures. Furthermore, we investigate the number of ridge curves and subparabolic curves near their singular point. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-01 2022-04-29T08:31:15Z 2022-04-29T08:31:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s00605-021-01607-8 Monatshefte fur Mathematik, v. 196, n. 3, p. 553-575, 2021. 0026-9255 http://hdl.handle.net/11449/229209 10.1007/s00605-021-01607-8 2-s2.0-85111164596 |
url |
http://dx.doi.org/10.1007/s00605-021-01607-8 http://hdl.handle.net/11449/229209 |
identifier_str_mv |
Monatshefte fur Mathematik, v. 196, n. 3, p. 553-575, 2021. 0026-9255 10.1007/s00605-021-01607-8 2-s2.0-85111164596 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Monatshefte fur Mathematik |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
553-575 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128680878145536 |