SECOND-ORDER FINITE DIFFERENCE APPROXIMATIONS OF THE UPPER-CONVECTED TIME DERIVATIVE\ast
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1137/20M1364990 http://hdl.handle.net/11449/218786 |
Resumo: | In this work, new finite difference schemes are presented for dealing with the upper convected time derivative in the context of the generalized Lie derivative. The upper-convected time derivative, which is usually encountered in the constitutive equation of the popular viscoelastic models, is reformulated in order to obtain approximations of second-order in time for solving a simplified constitutive equation in one and two dimensions. The theoretical analysis of the truncation errors of the methods takes into account the linear and quadratic interpolation operators based on a Lagrangian framework. Numerical experiments illustrating the theoretical results for the model equation defined in one and two dimensions are included. Finally, the finite difference approximations of second-order in time are also applied for solving a two-dimensional Oldroyd-B constitutive equation subjected to a prescribed velocity field at different Weissenberg numbers. |
id |
UNSP_987b4adaae68bbee70be9150022a084a |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/218786 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
SECOND-ORDER FINITE DIFFERENCE APPROXIMATIONS OF THE UPPER-CONVECTED TIME DERIVATIVE\astgeneralized Lie derivativeLagrangian schemefinite difference methodIn this work, new finite difference schemes are presented for dealing with the upper convected time derivative in the context of the generalized Lie derivative. The upper-convected time derivative, which is usually encountered in the constitutive equation of the popular viscoelastic models, is reformulated in order to obtain approximations of second-order in time for solving a simplified constitutive equation in one and two dimensions. The theoretical analysis of the truncation errors of the methods takes into account the linear and quadratic interpolation operators based on a Lagrangian framework. Numerical experiments illustrating the theoretical results for the model equation defined in one and two dimensions are included. Finally, the finite difference approximations of second-order in time are also applied for solving a two-dimensional Oldroyd-B constitutive equation subjected to a prescribed velocity field at different Weissenberg numbers.Center of Mathematical Sciences Applied to Industry (Cepid-CeMEAI) grantFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)JSPS KAKENHIJST PRESTO grantJST CREST grantConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Sao Paulo, Dept Matemat Aplicada & Estat, Inst Ciencias Matemat & Comp ICMC, Campus Sao Carlos, BR-1025480 Sao Paulo, SP, BrazilKanazawa Univ, Fac Math & Phys, Kanazawa, Ishikawa 9201192, JapanUniv Estadual Paulista, Dept Matemat & Comp, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, BrazilUniv Estadual Paulista, Dept Matemat & Comp, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, BrazilCenter of Mathematical Sciences Applied to Industry (Cepid-CeMEAI) grant: 2013/07375-0FAPESP: 2019/08742-2FAPESP: 2017/11428-2JSPS KAKENHI: JP18H01135JSPS KAKENHI: JP20H01823JSPS KAKENHI: JP20KK0058JSPS KAKENHI: JP21H04431JST PRESTO grant: JPMJPR16EAJST CREST grant: JPMJCR2014CNPq: 305383/2019-1FAPESP: 2013/07375-0Siam PublicationsUniversidade de São Paulo (USP)Kanazawa UnivUniversidade Estadual Paulista (UNESP)Medeiros, Debora D.Notsu, HirofumiOishi, Cassio M. [UNESP]2022-04-28T17:23:04Z2022-04-28T17:23:04Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2955-2988http://dx.doi.org/10.1137/20M1364990Siam Journal On Numerical Analysis. Philadelphia: Siam Publications, v. 59, n. 6, p. 2955-2988, 2021.0036-1429http://hdl.handle.net/11449/21878610.1137/20M1364990WOS:000748784400007Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSiam Journal On Numerical Analysisinfo:eu-repo/semantics/openAccess2024-06-19T14:32:06Zoai:repositorio.unesp.br:11449/218786Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:29:23.318789Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
SECOND-ORDER FINITE DIFFERENCE APPROXIMATIONS OF THE UPPER-CONVECTED TIME DERIVATIVE\ast |
title |
SECOND-ORDER FINITE DIFFERENCE APPROXIMATIONS OF THE UPPER-CONVECTED TIME DERIVATIVE\ast |
spellingShingle |
SECOND-ORDER FINITE DIFFERENCE APPROXIMATIONS OF THE UPPER-CONVECTED TIME DERIVATIVE\ast Medeiros, Debora D. generalized Lie derivative Lagrangian scheme finite difference method |
title_short |
SECOND-ORDER FINITE DIFFERENCE APPROXIMATIONS OF THE UPPER-CONVECTED TIME DERIVATIVE\ast |
title_full |
SECOND-ORDER FINITE DIFFERENCE APPROXIMATIONS OF THE UPPER-CONVECTED TIME DERIVATIVE\ast |
title_fullStr |
SECOND-ORDER FINITE DIFFERENCE APPROXIMATIONS OF THE UPPER-CONVECTED TIME DERIVATIVE\ast |
title_full_unstemmed |
SECOND-ORDER FINITE DIFFERENCE APPROXIMATIONS OF THE UPPER-CONVECTED TIME DERIVATIVE\ast |
title_sort |
SECOND-ORDER FINITE DIFFERENCE APPROXIMATIONS OF THE UPPER-CONVECTED TIME DERIVATIVE\ast |
author |
Medeiros, Debora D. |
author_facet |
Medeiros, Debora D. Notsu, Hirofumi Oishi, Cassio M. [UNESP] |
author_role |
author |
author2 |
Notsu, Hirofumi Oishi, Cassio M. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Kanazawa Univ Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Medeiros, Debora D. Notsu, Hirofumi Oishi, Cassio M. [UNESP] |
dc.subject.por.fl_str_mv |
generalized Lie derivative Lagrangian scheme finite difference method |
topic |
generalized Lie derivative Lagrangian scheme finite difference method |
description |
In this work, new finite difference schemes are presented for dealing with the upper convected time derivative in the context of the generalized Lie derivative. The upper-convected time derivative, which is usually encountered in the constitutive equation of the popular viscoelastic models, is reformulated in order to obtain approximations of second-order in time for solving a simplified constitutive equation in one and two dimensions. The theoretical analysis of the truncation errors of the methods takes into account the linear and quadratic interpolation operators based on a Lagrangian framework. Numerical experiments illustrating the theoretical results for the model equation defined in one and two dimensions are included. Finally, the finite difference approximations of second-order in time are also applied for solving a two-dimensional Oldroyd-B constitutive equation subjected to a prescribed velocity field at different Weissenberg numbers. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 2022-04-28T17:23:04Z 2022-04-28T17:23:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1137/20M1364990 Siam Journal On Numerical Analysis. Philadelphia: Siam Publications, v. 59, n. 6, p. 2955-2988, 2021. 0036-1429 http://hdl.handle.net/11449/218786 10.1137/20M1364990 WOS:000748784400007 |
url |
http://dx.doi.org/10.1137/20M1364990 http://hdl.handle.net/11449/218786 |
identifier_str_mv |
Siam Journal On Numerical Analysis. Philadelphia: Siam Publications, v. 59, n. 6, p. 2955-2988, 2021. 0036-1429 10.1137/20M1364990 WOS:000748784400007 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Siam Journal On Numerical Analysis |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
2955-2988 |
dc.publisher.none.fl_str_mv |
Siam Publications |
publisher.none.fl_str_mv |
Siam Publications |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129525061517312 |