Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s00032-018-0277-1 http://hdl.handle.net/11449/176031 |
Resumo: | In this work we state and prove versions of some classical results, in the framework of functionals defined in the space of functions of bounded variation in RN. More precisely, we present versions of the Radial Lemma of Strauss, the compactness of the embeddings of the space of radially symmetric functions of BV (RN) in some Lebesgue spaces and also a version of the Lions Lemma, proved in his celebrated paper of 1984. As an application, we get existence of a nontrivial bounded variation solution of a quasilinear elliptic problem involving the 1−Laplacian operator in RN, which has the lowest energy among all the radial ones. This seems to be one of the very first works dealing with stationary problems involving this operator in the whole space. |
id |
UNSP_98c70946386863692b0e471979102ffb |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/176031 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem1-Laplacian operatorBounded variation functionscompactness with symmetryIn this work we state and prove versions of some classical results, in the framework of functionals defined in the space of functions of bounded variation in RN. More precisely, we present versions of the Radial Lemma of Strauss, the compactness of the embeddings of the space of radially symmetric functions of BV (RN) in some Lebesgue spaces and also a version of the Lions Lemma, proved in his celebrated paper of 1984. As an application, we get existence of a nontrivial bounded variation solution of a quasilinear elliptic problem involving the 1−Laplacian operator in RN, which has the lowest energy among all the radial ones. This seems to be one of the very first works dealing with stationary problems involving this operator in the whole space.Departamento de Matemática Universidade de BrasíliaDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia UNESP - Universidade Estadual PaulistaDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia UNESP - Universidade Estadual PaulistaUniversidade de Brasília (UnB)Universidade Estadual Paulista (Unesp)Figueiredo, Giovany M.Pimenta, Marcos T. O. [UNESP]2018-12-11T17:18:37Z2018-12-11T17:18:37Z2018-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article15-30application/pdfhttp://dx.doi.org/10.1007/s00032-018-0277-1Milan Journal of Mathematics, v. 86, n. 1, p. 15-30, 2018.1424-92941424-9286http://hdl.handle.net/11449/17603110.1007/s00032-018-0277-12-s2.0-850441774322-s2.0-85044177432.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMilan Journal of Mathematics0,544info:eu-repo/semantics/openAccess2024-06-19T14:31:50Zoai:repositorio.unesp.br:11449/176031Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:30:06.129170Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem |
title |
Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem |
spellingShingle |
Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem Figueiredo, Giovany M. 1-Laplacian operator Bounded variation functions compactness with symmetry |
title_short |
Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem |
title_full |
Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem |
title_fullStr |
Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem |
title_full_unstemmed |
Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem |
title_sort |
Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem |
author |
Figueiredo, Giovany M. |
author_facet |
Figueiredo, Giovany M. Pimenta, Marcos T. O. [UNESP] |
author_role |
author |
author2 |
Pimenta, Marcos T. O. [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade de Brasília (UnB) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Figueiredo, Giovany M. Pimenta, Marcos T. O. [UNESP] |
dc.subject.por.fl_str_mv |
1-Laplacian operator Bounded variation functions compactness with symmetry |
topic |
1-Laplacian operator Bounded variation functions compactness with symmetry |
description |
In this work we state and prove versions of some classical results, in the framework of functionals defined in the space of functions of bounded variation in RN. More precisely, we present versions of the Radial Lemma of Strauss, the compactness of the embeddings of the space of radially symmetric functions of BV (RN) in some Lebesgue spaces and also a version of the Lions Lemma, proved in his celebrated paper of 1984. As an application, we get existence of a nontrivial bounded variation solution of a quasilinear elliptic problem involving the 1−Laplacian operator in RN, which has the lowest energy among all the radial ones. This seems to be one of the very first works dealing with stationary problems involving this operator in the whole space. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-11T17:18:37Z 2018-12-11T17:18:37Z 2018-06-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s00032-018-0277-1 Milan Journal of Mathematics, v. 86, n. 1, p. 15-30, 2018. 1424-9294 1424-9286 http://hdl.handle.net/11449/176031 10.1007/s00032-018-0277-1 2-s2.0-85044177432 2-s2.0-85044177432.pdf |
url |
http://dx.doi.org/10.1007/s00032-018-0277-1 http://hdl.handle.net/11449/176031 |
identifier_str_mv |
Milan Journal of Mathematics, v. 86, n. 1, p. 15-30, 2018. 1424-9294 1424-9286 10.1007/s00032-018-0277-1 2-s2.0-85044177432 2-s2.0-85044177432.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Milan Journal of Mathematics 0,544 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
15-30 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128368929931264 |