Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem

Detalhes bibliográficos
Autor(a) principal: Figueiredo, Giovany M.
Data de Publicação: 2018
Outros Autores: Pimenta, Marcos T. O. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s00032-018-0277-1
http://hdl.handle.net/11449/176031
Resumo: In this work we state and prove versions of some classical results, in the framework of functionals defined in the space of functions of bounded variation in RN. More precisely, we present versions of the Radial Lemma of Strauss, the compactness of the embeddings of the space of radially symmetric functions of BV (RN) in some Lebesgue spaces and also a version of the Lions Lemma, proved in his celebrated paper of 1984. As an application, we get existence of a nontrivial bounded variation solution of a quasilinear elliptic problem involving the 1−Laplacian operator in RN, which has the lowest energy among all the radial ones. This seems to be one of the very first works dealing with stationary problems involving this operator in the whole space.
id UNSP_98c70946386863692b0e471979102ffb
oai_identifier_str oai:repositorio.unesp.br:11449/176031
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem1-Laplacian operatorBounded variation functionscompactness with symmetryIn this work we state and prove versions of some classical results, in the framework of functionals defined in the space of functions of bounded variation in RN. More precisely, we present versions of the Radial Lemma of Strauss, the compactness of the embeddings of the space of radially symmetric functions of BV (RN) in some Lebesgue spaces and also a version of the Lions Lemma, proved in his celebrated paper of 1984. As an application, we get existence of a nontrivial bounded variation solution of a quasilinear elliptic problem involving the 1−Laplacian operator in RN, which has the lowest energy among all the radial ones. This seems to be one of the very first works dealing with stationary problems involving this operator in the whole space.Departamento de Matemática Universidade de BrasíliaDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia UNESP - Universidade Estadual PaulistaDepartamento de Matemática e Computação Faculdade de Ciências e Tecnologia UNESP - Universidade Estadual PaulistaUniversidade de Brasília (UnB)Universidade Estadual Paulista (Unesp)Figueiredo, Giovany M.Pimenta, Marcos T. O. [UNESP]2018-12-11T17:18:37Z2018-12-11T17:18:37Z2018-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article15-30application/pdfhttp://dx.doi.org/10.1007/s00032-018-0277-1Milan Journal of Mathematics, v. 86, n. 1, p. 15-30, 2018.1424-92941424-9286http://hdl.handle.net/11449/17603110.1007/s00032-018-0277-12-s2.0-850441774322-s2.0-85044177432.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMilan Journal of Mathematics0,544info:eu-repo/semantics/openAccess2024-06-19T14:31:50Zoai:repositorio.unesp.br:11449/176031Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:30:06.129170Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem
title Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem
spellingShingle Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem
Figueiredo, Giovany M.
1-Laplacian operator
Bounded variation functions
compactness with symmetry
title_short Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem
title_full Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem
title_fullStr Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem
title_full_unstemmed Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem
title_sort Strauss’ and Lions’ Type Results in BV(RN) with an Application to an 1-Laplacian Problem
author Figueiredo, Giovany M.
author_facet Figueiredo, Giovany M.
Pimenta, Marcos T. O. [UNESP]
author_role author
author2 Pimenta, Marcos T. O. [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade de Brasília (UnB)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Figueiredo, Giovany M.
Pimenta, Marcos T. O. [UNESP]
dc.subject.por.fl_str_mv 1-Laplacian operator
Bounded variation functions
compactness with symmetry
topic 1-Laplacian operator
Bounded variation functions
compactness with symmetry
description In this work we state and prove versions of some classical results, in the framework of functionals defined in the space of functions of bounded variation in RN. More precisely, we present versions of the Radial Lemma of Strauss, the compactness of the embeddings of the space of radially symmetric functions of BV (RN) in some Lebesgue spaces and also a version of the Lions Lemma, proved in his celebrated paper of 1984. As an application, we get existence of a nontrivial bounded variation solution of a quasilinear elliptic problem involving the 1−Laplacian operator in RN, which has the lowest energy among all the radial ones. This seems to be one of the very first works dealing with stationary problems involving this operator in the whole space.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T17:18:37Z
2018-12-11T17:18:37Z
2018-06-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s00032-018-0277-1
Milan Journal of Mathematics, v. 86, n. 1, p. 15-30, 2018.
1424-9294
1424-9286
http://hdl.handle.net/11449/176031
10.1007/s00032-018-0277-1
2-s2.0-85044177432
2-s2.0-85044177432.pdf
url http://dx.doi.org/10.1007/s00032-018-0277-1
http://hdl.handle.net/11449/176031
identifier_str_mv Milan Journal of Mathematics, v. 86, n. 1, p. 15-30, 2018.
1424-9294
1424-9286
10.1007/s00032-018-0277-1
2-s2.0-85044177432
2-s2.0-85044177432.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Milan Journal of Mathematics
0,544
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 15-30
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128368929931264