Mineração multirrelacional de regras de associação em grandes bases de dados

Detalhes bibliográficos
Autor(a) principal: Oyama, Fernando Takeshi [UNESP]
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/98694
Resumo: O crescente avanço e a disponibilidade de recursos computacionais viabilizam o armazenamento e a manipulação de grandes bases de dados. As técnicas típicas de mineração de dados possibilitam a extração de padrões desde que os dados estejam armazenados em uma única tabela. A mineração de dados multirrelacional, por sua vez, apresenta-se como uma abordagem mais recente que permite buscar padrões provenientes de múltiplas tabelas, sendo indicada para a aplicação em bases de dados relacionais. No entanto, os algoritmos multirrelacionais de mineração de regras de associação existentes tornam-se impossibilitados de efetuar a tarefa de mineração em grandes volumes de dados, uma vez que a quantia de memória exigida para a conclusão do processamento ultrapassa a quantidade disponível. O objetivo do presente trabalho consiste em apresentar um algoritmo multirrelacional de extração de regras de associação com o foco na aplicação em grandes bases de dados relacionais. Para isso, o algoritmo proposto, MR-RADIX, apresenta uma estrutura denominada Radix-tree que representa comprimidamente a base de dados em memória. Além disso, o algoritmo utiliza-se do conceito de particionamento para subdividir a base de dados, de modo que cada partição possa ser processada integralmente em memória. Os testes realizados demonstram que o algoritmo MR-RADIX proporciona um desempenho superior a outros algoritmos correlatos e, ainda, efetua com êxito, diferentemente dos demais, a mineração de regras de associação em grandes bases de dados.
id UNSP_9af33aaf66fe2216bfa0076ce8e4baaa
oai_identifier_str oai:repositorio.unesp.br:11449/98694
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Mineração multirrelacional de regras de associação em grandes bases de dadosBanco de dadosMineração de dados (Computação)Sistemas de computaçãoMR-RADIXMulti-relational data miningRelational databaseO crescente avanço e a disponibilidade de recursos computacionais viabilizam o armazenamento e a manipulação de grandes bases de dados. As técnicas típicas de mineração de dados possibilitam a extração de padrões desde que os dados estejam armazenados em uma única tabela. A mineração de dados multirrelacional, por sua vez, apresenta-se como uma abordagem mais recente que permite buscar padrões provenientes de múltiplas tabelas, sendo indicada para a aplicação em bases de dados relacionais. No entanto, os algoritmos multirrelacionais de mineração de regras de associação existentes tornam-se impossibilitados de efetuar a tarefa de mineração em grandes volumes de dados, uma vez que a quantia de memória exigida para a conclusão do processamento ultrapassa a quantidade disponível. O objetivo do presente trabalho consiste em apresentar um algoritmo multirrelacional de extração de regras de associação com o foco na aplicação em grandes bases de dados relacionais. Para isso, o algoritmo proposto, MR-RADIX, apresenta uma estrutura denominada Radix-tree que representa comprimidamente a base de dados em memória. Além disso, o algoritmo utiliza-se do conceito de particionamento para subdividir a base de dados, de modo que cada partição possa ser processada integralmente em memória. Os testes realizados demonstram que o algoritmo MR-RADIX proporciona um desempenho superior a outros algoritmos correlatos e, ainda, efetua com êxito, diferentemente dos demais, a mineração de regras de associação em grandes bases de dados.The increasing spread and availability of computing resources make feasible storage and handling of large databases. Traditional techniques of data mining allows the extraction of patterns provided that data is stored in a single table. The multi- relational data mining presents itself as a more recent approach that allows search patterns from multiple tables, indicated for use in relational databases. However, the existing multi-relational association rules mining algorithms become unable to make mining task in large data, since the amount of memory required for the completion of processing exceed the amount available. The goal of this work is to present a multi- relational algorithm for extracting association rules with focus application in large relational databases. For this the proposed algorithm MR-RADIX presents a structure called Radix-tree that represents compressly the database in memory. Moreover, the algorithm uses the concept of partitioning to subdivide the database, so that each partition can be processed entirely in memory. The tests show that the MR-RADIX algorithm provides better performance than other related algorithms, and also performs successfully, unlike others, the association rules mining in large databases.Universidade Estadual Paulista (Unesp)Valêncio, Carlos Roberto [UNESP]Universidade Estadual Paulista (Unesp)Oyama, Fernando Takeshi [UNESP]2014-06-11T19:29:40Z2014-06-11T19:29:40Z2010-02-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis126 f. : il.application/pdfOYAMA, Fernando Takeshi. Mineração multirrelacional de regras de associação em grandes bases de dados. 2010. 126 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2010.http://hdl.handle.net/11449/98694000607390oyama_ft_me_sjrp.pdf33004153073P2Alephreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporinfo:eu-repo/semantics/openAccess2023-12-04T06:15:59Zoai:repositorio.unesp.br:11449/98694Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:29:15.852032Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Mineração multirrelacional de regras de associação em grandes bases de dados
title Mineração multirrelacional de regras de associação em grandes bases de dados
spellingShingle Mineração multirrelacional de regras de associação em grandes bases de dados
Oyama, Fernando Takeshi [UNESP]
Banco de dados
Mineração de dados (Computação)
Sistemas de computação
MR-RADIX
Multi-relational data mining
Relational database
title_short Mineração multirrelacional de regras de associação em grandes bases de dados
title_full Mineração multirrelacional de regras de associação em grandes bases de dados
title_fullStr Mineração multirrelacional de regras de associação em grandes bases de dados
title_full_unstemmed Mineração multirrelacional de regras de associação em grandes bases de dados
title_sort Mineração multirrelacional de regras de associação em grandes bases de dados
author Oyama, Fernando Takeshi [UNESP]
author_facet Oyama, Fernando Takeshi [UNESP]
author_role author
dc.contributor.none.fl_str_mv Valêncio, Carlos Roberto [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Oyama, Fernando Takeshi [UNESP]
dc.subject.por.fl_str_mv Banco de dados
Mineração de dados (Computação)
Sistemas de computação
MR-RADIX
Multi-relational data mining
Relational database
topic Banco de dados
Mineração de dados (Computação)
Sistemas de computação
MR-RADIX
Multi-relational data mining
Relational database
description O crescente avanço e a disponibilidade de recursos computacionais viabilizam o armazenamento e a manipulação de grandes bases de dados. As técnicas típicas de mineração de dados possibilitam a extração de padrões desde que os dados estejam armazenados em uma única tabela. A mineração de dados multirrelacional, por sua vez, apresenta-se como uma abordagem mais recente que permite buscar padrões provenientes de múltiplas tabelas, sendo indicada para a aplicação em bases de dados relacionais. No entanto, os algoritmos multirrelacionais de mineração de regras de associação existentes tornam-se impossibilitados de efetuar a tarefa de mineração em grandes volumes de dados, uma vez que a quantia de memória exigida para a conclusão do processamento ultrapassa a quantidade disponível. O objetivo do presente trabalho consiste em apresentar um algoritmo multirrelacional de extração de regras de associação com o foco na aplicação em grandes bases de dados relacionais. Para isso, o algoritmo proposto, MR-RADIX, apresenta uma estrutura denominada Radix-tree que representa comprimidamente a base de dados em memória. Além disso, o algoritmo utiliza-se do conceito de particionamento para subdividir a base de dados, de modo que cada partição possa ser processada integralmente em memória. Os testes realizados demonstram que o algoritmo MR-RADIX proporciona um desempenho superior a outros algoritmos correlatos e, ainda, efetua com êxito, diferentemente dos demais, a mineração de regras de associação em grandes bases de dados.
publishDate 2010
dc.date.none.fl_str_mv 2010-02-22
2014-06-11T19:29:40Z
2014-06-11T19:29:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv OYAMA, Fernando Takeshi. Mineração multirrelacional de regras de associação em grandes bases de dados. 2010. 126 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2010.
http://hdl.handle.net/11449/98694
000607390
oyama_ft_me_sjrp.pdf
33004153073P2
identifier_str_mv OYAMA, Fernando Takeshi. Mineração multirrelacional de regras de associação em grandes bases de dados. 2010. 126 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2010.
000607390
oyama_ft_me_sjrp.pdf
33004153073P2
url http://hdl.handle.net/11449/98694
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 126 f. : il.
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv Aleph
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129076533133312