Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map

Detalhes bibliográficos
Autor(a) principal: Hermes, Joelson D.V.
Data de Publicação: 2020
Outros Autores: Graciano, Flávio Heleno, Leonel, Edson D. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.5890/DNC.2020.03.005
http://hdl.handle.net/11449/198514
Resumo: The scaling formalism is applied to understand and describe the evolution towards the equilibrium at and near at a tangent bifurcation in the logistic map. At the bifurcation the convergence to the steady state is described by a homogeneous function leading to a set of critical exponents. Near the bifurcation the convergence is rather exponential whose relaxation time is given by a power law. We use two different approaches to obtain the critical exponents: (1) a phenomenological investigation based on three scaling hypotheses leading to a scaling law relating three critical exponents and; (2) an approximation that transforms the recurrence equations in a differential equation which is solved under appropriate conditions given analytically the scaling exponents. The numerical results give support for the theoretical approach.
id UNSP_9b4180d0241f921e56277a9ed11b793f
oai_identifier_str oai:repositorio.unesp.br:11449/198514
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic mapCritical exponentsLogistic mapTangent bifurcationThe scaling formalism is applied to understand and describe the evolution towards the equilibrium at and near at a tangent bifurcation in the logistic map. At the bifurcation the convergence to the steady state is described by a homogeneous function leading to a set of critical exponents. Near the bifurcation the convergence is rather exponential whose relaxation time is given by a power law. We use two different approaches to obtain the critical exponents: (1) a phenomenological investigation based on three scaling hypotheses leading to a scaling law relating three critical exponents and; (2) an approximation that transforms the recurrence equations in a differential equation which is solved under appropriate conditions given analytically the scaling exponents. The numerical results give support for the theoretical approach.Instituto Federal de Educaç ão Ciência e Tecnologia do Sul de Minas Gerais Praça TiradentesInstituto Federal de Educaç ão Ciência e Tecnologia do Sul de Minas Gerais, Avenida Maria da Conceiç ão SantosDepartamento de Física UNESP - Univ Estadual Paulista, Av. 24A, 1515, Bela VistaDepartamento de Física UNESP - Univ Estadual Paulista, Av. 24A, 1515, Bela VistaPraça TiradentesInstituto Federal de Educaç ão Ciência e Tecnologia do Sul de Minas GeraisUniversidade Estadual Paulista (Unesp)Hermes, Joelson D.V.Graciano, Flávio HelenoLeonel, Edson D. [UNESP]2020-12-12T01:14:59Z2020-12-12T01:14:59Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article63-70http://dx.doi.org/10.5890/DNC.2020.03.005Discontinuity, Nonlinearity, and Complexity, v. 9, n. 1, p. 63-70, 2020.2164-64142164-6376http://hdl.handle.net/11449/19851410.5890/DNC.2020.03.0052-s2.0-85079386572Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengDiscontinuity, Nonlinearity, and Complexityinfo:eu-repo/semantics/openAccess2021-10-22T13:22:07Zoai:repositorio.unesp.br:11449/198514Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:10:58.794949Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map
title Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map
spellingShingle Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map
Hermes, Joelson D.V.
Critical exponents
Logistic map
Tangent bifurcation
title_short Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map
title_full Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map
title_fullStr Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map
title_full_unstemmed Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map
title_sort Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map
author Hermes, Joelson D.V.
author_facet Hermes, Joelson D.V.
Graciano, Flávio Heleno
Leonel, Edson D. [UNESP]
author_role author
author2 Graciano, Flávio Heleno
Leonel, Edson D. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Praça Tiradentes
Instituto Federal de Educaç ão Ciência e Tecnologia do Sul de Minas Gerais
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Hermes, Joelson D.V.
Graciano, Flávio Heleno
Leonel, Edson D. [UNESP]
dc.subject.por.fl_str_mv Critical exponents
Logistic map
Tangent bifurcation
topic Critical exponents
Logistic map
Tangent bifurcation
description The scaling formalism is applied to understand and describe the evolution towards the equilibrium at and near at a tangent bifurcation in the logistic map. At the bifurcation the convergence to the steady state is described by a homogeneous function leading to a set of critical exponents. Near the bifurcation the convergence is rather exponential whose relaxation time is given by a power law. We use two different approaches to obtain the critical exponents: (1) a phenomenological investigation based on three scaling hypotheses leading to a scaling law relating three critical exponents and; (2) an approximation that transforms the recurrence equations in a differential equation which is solved under appropriate conditions given analytically the scaling exponents. The numerical results give support for the theoretical approach.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T01:14:59Z
2020-12-12T01:14:59Z
2020-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.5890/DNC.2020.03.005
Discontinuity, Nonlinearity, and Complexity, v. 9, n. 1, p. 63-70, 2020.
2164-6414
2164-6376
http://hdl.handle.net/11449/198514
10.5890/DNC.2020.03.005
2-s2.0-85079386572
url http://dx.doi.org/10.5890/DNC.2020.03.005
http://hdl.handle.net/11449/198514
identifier_str_mv Discontinuity, Nonlinearity, and Complexity, v. 9, n. 1, p. 63-70, 2020.
2164-6414
2164-6376
10.5890/DNC.2020.03.005
2-s2.0-85079386572
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Discontinuity, Nonlinearity, and Complexity
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 63-70
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128767949799424