Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.5890/DNC.2020.03.005 http://hdl.handle.net/11449/198514 |
Resumo: | The scaling formalism is applied to understand and describe the evolution towards the equilibrium at and near at a tangent bifurcation in the logistic map. At the bifurcation the convergence to the steady state is described by a homogeneous function leading to a set of critical exponents. Near the bifurcation the convergence is rather exponential whose relaxation time is given by a power law. We use two different approaches to obtain the critical exponents: (1) a phenomenological investigation based on three scaling hypotheses leading to a scaling law relating three critical exponents and; (2) an approximation that transforms the recurrence equations in a differential equation which is solved under appropriate conditions given analytically the scaling exponents. The numerical results give support for the theoretical approach. |
id |
UNSP_9b4180d0241f921e56277a9ed11b793f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/198514 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic mapCritical exponentsLogistic mapTangent bifurcationThe scaling formalism is applied to understand and describe the evolution towards the equilibrium at and near at a tangent bifurcation in the logistic map. At the bifurcation the convergence to the steady state is described by a homogeneous function leading to a set of critical exponents. Near the bifurcation the convergence is rather exponential whose relaxation time is given by a power law. We use two different approaches to obtain the critical exponents: (1) a phenomenological investigation based on three scaling hypotheses leading to a scaling law relating three critical exponents and; (2) an approximation that transforms the recurrence equations in a differential equation which is solved under appropriate conditions given analytically the scaling exponents. The numerical results give support for the theoretical approach.Instituto Federal de Educaç ão Ciência e Tecnologia do Sul de Minas Gerais Praça TiradentesInstituto Federal de Educaç ão Ciência e Tecnologia do Sul de Minas Gerais, Avenida Maria da Conceiç ão SantosDepartamento de Física UNESP - Univ Estadual Paulista, Av. 24A, 1515, Bela VistaDepartamento de Física UNESP - Univ Estadual Paulista, Av. 24A, 1515, Bela VistaPraça TiradentesInstituto Federal de Educaç ão Ciência e Tecnologia do Sul de Minas GeraisUniversidade Estadual Paulista (Unesp)Hermes, Joelson D.V.Graciano, Flávio HelenoLeonel, Edson D. [UNESP]2020-12-12T01:14:59Z2020-12-12T01:14:59Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article63-70http://dx.doi.org/10.5890/DNC.2020.03.005Discontinuity, Nonlinearity, and Complexity, v. 9, n. 1, p. 63-70, 2020.2164-64142164-6376http://hdl.handle.net/11449/19851410.5890/DNC.2020.03.0052-s2.0-85079386572Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengDiscontinuity, Nonlinearity, and Complexityinfo:eu-repo/semantics/openAccess2021-10-22T13:22:07Zoai:repositorio.unesp.br:11449/198514Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:10:58.794949Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map |
title |
Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map |
spellingShingle |
Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map Hermes, Joelson D.V. Critical exponents Logistic map Tangent bifurcation |
title_short |
Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map |
title_full |
Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map |
title_fullStr |
Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map |
title_full_unstemmed |
Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map |
title_sort |
Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map |
author |
Hermes, Joelson D.V. |
author_facet |
Hermes, Joelson D.V. Graciano, Flávio Heleno Leonel, Edson D. [UNESP] |
author_role |
author |
author2 |
Graciano, Flávio Heleno Leonel, Edson D. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Praça Tiradentes Instituto Federal de Educaç ão Ciência e Tecnologia do Sul de Minas Gerais Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Hermes, Joelson D.V. Graciano, Flávio Heleno Leonel, Edson D. [UNESP] |
dc.subject.por.fl_str_mv |
Critical exponents Logistic map Tangent bifurcation |
topic |
Critical exponents Logistic map Tangent bifurcation |
description |
The scaling formalism is applied to understand and describe the evolution towards the equilibrium at and near at a tangent bifurcation in the logistic map. At the bifurcation the convergence to the steady state is described by a homogeneous function leading to a set of critical exponents. Near the bifurcation the convergence is rather exponential whose relaxation time is given by a power law. We use two different approaches to obtain the critical exponents: (1) a phenomenological investigation based on three scaling hypotheses leading to a scaling law relating three critical exponents and; (2) an approximation that transforms the recurrence equations in a differential equation which is solved under appropriate conditions given analytically the scaling exponents. The numerical results give support for the theoretical approach. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T01:14:59Z 2020-12-12T01:14:59Z 2020-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.5890/DNC.2020.03.005 Discontinuity, Nonlinearity, and Complexity, v. 9, n. 1, p. 63-70, 2020. 2164-6414 2164-6376 http://hdl.handle.net/11449/198514 10.5890/DNC.2020.03.005 2-s2.0-85079386572 |
url |
http://dx.doi.org/10.5890/DNC.2020.03.005 http://hdl.handle.net/11449/198514 |
identifier_str_mv |
Discontinuity, Nonlinearity, and Complexity, v. 9, n. 1, p. 63-70, 2020. 2164-6414 2164-6376 10.5890/DNC.2020.03.005 2-s2.0-85079386572 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Discontinuity, Nonlinearity, and Complexity |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
63-70 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128767949799424 |