The δ expansion and the principle of minimal sensitivity

Detalhes bibliográficos
Autor(a) principal: Krein, G. [UNESP]
Data de Publicação: 1998
Outros Autores: Menezes, D. P., Nielsen, M., Pinto, M. B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1590/S0103-97331998000100009
http://hdl.handle.net/11449/65408
Resumo: The δ-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. Different ways of implementing the principle of minimal sensitivity to the δ-expansion produce in general different results for observables. For illustration we use the Nambu-Jona-Lasinio model for chiral symmetry restoration at finite density and compare results with those obtained with the Hartree-Fock approximation.
id UNSP_9ca3baca0c2cbe7c1b49cc1462f2a6df
oai_identifier_str oai:repositorio.unesp.br:11449/65408
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling The δ expansion and the principle of minimal sensitivityThe δ-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. Different ways of implementing the principle of minimal sensitivity to the δ-expansion produce in general different results for observables. For illustration we use the Nambu-Jona-Lasinio model for chiral symmetry restoration at finite density and compare results with those obtained with the Hartree-Fock approximation.Institut für Kernphysik Universität Mainz, D-55099 MainzInst. de Fis. Teórica Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 São Paulo-SPDepartamento de Física Univ. Federal de Santa Catarina, 88.040-900 Florianopolis, S.C.Instituto de Física Universidade de São Paulo, Caixa Postal 66318, 05315-970 São Paulo, S.P.Inst. de Fis. Teórica Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 São Paulo-SPUniversität MainzUniversidade Estadual Paulista (Unesp)Universidade Federal de Santa Catarina (UFSC)Universidade de São Paulo (USP)Krein, G. [UNESP]Menezes, D. P.Nielsen, M.Pinto, M. B.2014-05-27T11:19:33Z2014-05-27T11:19:33Z1998-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article66-71application/pdfhttp://dx.doi.org/10.1590/S0103-97331998000100009Brazilian Journal of Physics, v. 28, n. 1, p. 66-71, 1998.0103-9733http://hdl.handle.net/11449/6540810.1590/S0103-97331998000100009S0103-97331998000100009WOS:0000768246000092-s2.0-00405772542-s2.0-0040577254.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBrazilian Journal of Physics1.0820,276info:eu-repo/semantics/openAccess2023-12-16T06:23:51Zoai:repositorio.unesp.br:11449/65408Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:30:38.368879Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv The δ expansion and the principle of minimal sensitivity
title The δ expansion and the principle of minimal sensitivity
spellingShingle The δ expansion and the principle of minimal sensitivity
Krein, G. [UNESP]
title_short The δ expansion and the principle of minimal sensitivity
title_full The δ expansion and the principle of minimal sensitivity
title_fullStr The δ expansion and the principle of minimal sensitivity
title_full_unstemmed The δ expansion and the principle of minimal sensitivity
title_sort The δ expansion and the principle of minimal sensitivity
author Krein, G. [UNESP]
author_facet Krein, G. [UNESP]
Menezes, D. P.
Nielsen, M.
Pinto, M. B.
author_role author
author2 Menezes, D. P.
Nielsen, M.
Pinto, M. B.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universität Mainz
Universidade Estadual Paulista (Unesp)
Universidade Federal de Santa Catarina (UFSC)
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Krein, G. [UNESP]
Menezes, D. P.
Nielsen, M.
Pinto, M. B.
description The δ-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. Different ways of implementing the principle of minimal sensitivity to the δ-expansion produce in general different results for observables. For illustration we use the Nambu-Jona-Lasinio model for chiral symmetry restoration at finite density and compare results with those obtained with the Hartree-Fock approximation.
publishDate 1998
dc.date.none.fl_str_mv 1998-03-01
2014-05-27T11:19:33Z
2014-05-27T11:19:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/S0103-97331998000100009
Brazilian Journal of Physics, v. 28, n. 1, p. 66-71, 1998.
0103-9733
http://hdl.handle.net/11449/65408
10.1590/S0103-97331998000100009
S0103-97331998000100009
WOS:000076824600009
2-s2.0-0040577254
2-s2.0-0040577254.pdf
url http://dx.doi.org/10.1590/S0103-97331998000100009
http://hdl.handle.net/11449/65408
identifier_str_mv Brazilian Journal of Physics, v. 28, n. 1, p. 66-71, 1998.
0103-9733
10.1590/S0103-97331998000100009
S0103-97331998000100009
WOS:000076824600009
2-s2.0-0040577254
2-s2.0-0040577254.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Brazilian Journal of Physics
1.082
0,276
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 66-71
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129212870033408