The Trinomial ATTRIVAR control chart
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.ijpe.2019.107559 http://hdl.handle.net/11449/196764 |
Resumo: | In this article, we propose the Trinomial - ATTRIVAR (T-ATTRIVAR) control chart where attribute and variable sample data are used to control the process mean. Firstly, two discriminating limits sort the sample items into three excluding categories; that is, items in categories A, B, or AB, are, respectively, items with X dimensions smaller than the lower discriminating limit, larger than the upper discriminating limit, or neither smaller than the lower discriminating limit nor larger than the upper discriminating limit. Depending on the number of sample items in each category, one of three decisions is made: the process is declared in-control, the process is declared out-of-control, or all sample items are also measured. In this last case, the sample mean of X is used to decide the state of the process. Aslam et al. (2015) worked with the particular case where the sample items are classified as defective (items in category - A plus items in category - B) or not-defective (items in category - AB). The strategy of splitting defectives into two excluding categories (A and B) enhances the performance of the ATTRIVAR chart. It is worth to emphasize that the previous attribute classification truncates the X distribution. Consequently, the mathematical development to obtain the ARLs is complex - the Average Run length (ARL) is the average number of samples the control chart requires to signal. With the density function of the sum of truncated X distributions, we obtained the exact ARLs. The exact minimum ARLs are lower than the minimum ARLs Ho and Aparisi (2016) obtained with the Genetic Algorithm. |
id |
UNSP_9ffc5609da441bdb7eabf3d8ea38b613 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/196764 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
The Trinomial ATTRIVAR control chartShewhart control chartATTRIVAR control chartTruncated normal distributionsAverage run lengthMonitoring process meanIn this article, we propose the Trinomial - ATTRIVAR (T-ATTRIVAR) control chart where attribute and variable sample data are used to control the process mean. Firstly, two discriminating limits sort the sample items into three excluding categories; that is, items in categories A, B, or AB, are, respectively, items with X dimensions smaller than the lower discriminating limit, larger than the upper discriminating limit, or neither smaller than the lower discriminating limit nor larger than the upper discriminating limit. Depending on the number of sample items in each category, one of three decisions is made: the process is declared in-control, the process is declared out-of-control, or all sample items are also measured. In this last case, the sample mean of X is used to decide the state of the process. Aslam et al. (2015) worked with the particular case where the sample items are classified as defective (items in category - A plus items in category - B) or not-defective (items in category - AB). The strategy of splitting defectives into two excluding categories (A and B) enhances the performance of the ATTRIVAR chart. It is worth to emphasize that the previous attribute classification truncates the X distribution. Consequently, the mathematical development to obtain the ARLs is complex - the Average Run length (ARL) is the average number of samples the control chart requires to signal. With the density function of the sum of truncated X distributions, we obtained the exact ARLs. The exact minimum ARLs are lower than the minimum ARLs Ho and Aparisi (2016) obtained with the Genetic Algorithm.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Estadual Paulista, Dept Prod, Campus Guaratingueta, Sao Paulo, SP, BrazilUniv Fed Itajuba, Itajuba, MG, BrazilUniv Estadual Paulista, Dept Prod, Campus Guaratingueta, Sao Paulo, SP, BrazilFAPESP: 2018/07147-0CNPq: 306671/2015-0CNPq: 304599/2015-8Elsevier B.V.Universidade Estadual Paulista (Unesp)Univ Fed ItajubaSimoes, Felipe Domingues [UNESP]Branco Costa, Antonio FernandoGuerreiro Machado, Marcela Aparecida [UNESP]2020-12-10T19:55:26Z2020-12-10T19:55:26Z2020-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article8http://dx.doi.org/10.1016/j.ijpe.2019.107559International Journal Of Production Economics. Amsterdam: Elsevier, v. 224, 8 p., 2020.0925-5273http://hdl.handle.net/11449/19676410.1016/j.ijpe.2019.107559WOS:000525321800014Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal Of Production Economicsinfo:eu-repo/semantics/openAccess2024-07-02T17:37:20Zoai:repositorio.unesp.br:11449/196764Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:29:43.018208Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
The Trinomial ATTRIVAR control chart |
title |
The Trinomial ATTRIVAR control chart |
spellingShingle |
The Trinomial ATTRIVAR control chart Simoes, Felipe Domingues [UNESP] Shewhart control chart ATTRIVAR control chart Truncated normal distributions Average run length Monitoring process mean |
title_short |
The Trinomial ATTRIVAR control chart |
title_full |
The Trinomial ATTRIVAR control chart |
title_fullStr |
The Trinomial ATTRIVAR control chart |
title_full_unstemmed |
The Trinomial ATTRIVAR control chart |
title_sort |
The Trinomial ATTRIVAR control chart |
author |
Simoes, Felipe Domingues [UNESP] |
author_facet |
Simoes, Felipe Domingues [UNESP] Branco Costa, Antonio Fernando Guerreiro Machado, Marcela Aparecida [UNESP] |
author_role |
author |
author2 |
Branco Costa, Antonio Fernando Guerreiro Machado, Marcela Aparecida [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Univ Fed Itajuba |
dc.contributor.author.fl_str_mv |
Simoes, Felipe Domingues [UNESP] Branco Costa, Antonio Fernando Guerreiro Machado, Marcela Aparecida [UNESP] |
dc.subject.por.fl_str_mv |
Shewhart control chart ATTRIVAR control chart Truncated normal distributions Average run length Monitoring process mean |
topic |
Shewhart control chart ATTRIVAR control chart Truncated normal distributions Average run length Monitoring process mean |
description |
In this article, we propose the Trinomial - ATTRIVAR (T-ATTRIVAR) control chart where attribute and variable sample data are used to control the process mean. Firstly, two discriminating limits sort the sample items into three excluding categories; that is, items in categories A, B, or AB, are, respectively, items with X dimensions smaller than the lower discriminating limit, larger than the upper discriminating limit, or neither smaller than the lower discriminating limit nor larger than the upper discriminating limit. Depending on the number of sample items in each category, one of three decisions is made: the process is declared in-control, the process is declared out-of-control, or all sample items are also measured. In this last case, the sample mean of X is used to decide the state of the process. Aslam et al. (2015) worked with the particular case where the sample items are classified as defective (items in category - A plus items in category - B) or not-defective (items in category - AB). The strategy of splitting defectives into two excluding categories (A and B) enhances the performance of the ATTRIVAR chart. It is worth to emphasize that the previous attribute classification truncates the X distribution. Consequently, the mathematical development to obtain the ARLs is complex - the Average Run length (ARL) is the average number of samples the control chart requires to signal. With the density function of the sum of truncated X distributions, we obtained the exact ARLs. The exact minimum ARLs are lower than the minimum ARLs Ho and Aparisi (2016) obtained with the Genetic Algorithm. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-10T19:55:26Z 2020-12-10T19:55:26Z 2020-06-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.ijpe.2019.107559 International Journal Of Production Economics. Amsterdam: Elsevier, v. 224, 8 p., 2020. 0925-5273 http://hdl.handle.net/11449/196764 10.1016/j.ijpe.2019.107559 WOS:000525321800014 |
url |
http://dx.doi.org/10.1016/j.ijpe.2019.107559 http://hdl.handle.net/11449/196764 |
identifier_str_mv |
International Journal Of Production Economics. Amsterdam: Elsevier, v. 224, 8 p., 2020. 0925-5273 10.1016/j.ijpe.2019.107559 WOS:000525321800014 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal Of Production Economics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
8 |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129431043047424 |