A modified least squares method: Approximations on the unit circle and on (−1,1)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.cam.2022.114168 http://hdl.handle.net/11449/223536 |
Resumo: | The main objective in the present manuscript is to consider approximations of functions defined on the unit circle by Laurent polynomials derived from certain combinations of kernel polynomials of orthogonal polynomials on the unit circle. The method that we employ is based on a modification of the least squares method. The modification adopted here simplifies considerably the determinations of the coefficients in the combinations. Numerical examples show that this modified technique still leads to very good approximations. |
id |
UNSP_a063006d5485c3fbb3006d376969a013 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/223536 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A modified least squares method: Approximations on the unit circle and on (−1,1)Kernel polynomials on the unit circleLeast squares approximationOrthogonal polynomials on the unit circleThe main objective in the present manuscript is to consider approximations of functions defined on the unit circle by Laurent polynomials derived from certain combinations of kernel polynomials of orthogonal polynomials on the unit circle. The method that we employ is based on a modification of the least squares method. The modification adopted here simplifies considerably the determinations of the coefficients in the combinations. Numerical examples show that this modified technique still leads to very good approximations.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UNESP - Universidade Estadual Paulista Departamento de Matamática IBILCE/UNESP, Rua Cristóvão Colombo 2265UNESP - Universidade Estadual Paulista Departamento de Matamática IBILCE/UNESP, Rua Cristóvão Colombo 2265CAPES: 2016/09906-0FAPESP: 2017/04358-8CAPES: 2020/14244-2CNPq: 304087/2018-1Universidade Estadual Paulista (UNESP)Silva Ribeiro, Luana L. [UNESP]Sri Ranga, A. [UNESP]2022-04-28T19:51:18Z2022-04-28T19:51:18Z2022-08-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.cam.2022.114168Journal of Computational and Applied Mathematics, v. 410.0377-0427http://hdl.handle.net/11449/22353610.1016/j.cam.2022.1141682-s2.0-85125450285Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Computational and Applied Mathematicsinfo:eu-repo/semantics/openAccess2022-04-28T19:51:18Zoai:repositorio.unesp.br:11449/223536Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:57:26.312159Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A modified least squares method: Approximations on the unit circle and on (−1,1) |
title |
A modified least squares method: Approximations on the unit circle and on (−1,1) |
spellingShingle |
A modified least squares method: Approximations on the unit circle and on (−1,1) Silva Ribeiro, Luana L. [UNESP] Kernel polynomials on the unit circle Least squares approximation Orthogonal polynomials on the unit circle |
title_short |
A modified least squares method: Approximations on the unit circle and on (−1,1) |
title_full |
A modified least squares method: Approximations on the unit circle and on (−1,1) |
title_fullStr |
A modified least squares method: Approximations on the unit circle and on (−1,1) |
title_full_unstemmed |
A modified least squares method: Approximations on the unit circle and on (−1,1) |
title_sort |
A modified least squares method: Approximations on the unit circle and on (−1,1) |
author |
Silva Ribeiro, Luana L. [UNESP] |
author_facet |
Silva Ribeiro, Luana L. [UNESP] Sri Ranga, A. [UNESP] |
author_role |
author |
author2 |
Sri Ranga, A. [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Silva Ribeiro, Luana L. [UNESP] Sri Ranga, A. [UNESP] |
dc.subject.por.fl_str_mv |
Kernel polynomials on the unit circle Least squares approximation Orthogonal polynomials on the unit circle |
topic |
Kernel polynomials on the unit circle Least squares approximation Orthogonal polynomials on the unit circle |
description |
The main objective in the present manuscript is to consider approximations of functions defined on the unit circle by Laurent polynomials derived from certain combinations of kernel polynomials of orthogonal polynomials on the unit circle. The method that we employ is based on a modification of the least squares method. The modification adopted here simplifies considerably the determinations of the coefficients in the combinations. Numerical examples show that this modified technique still leads to very good approximations. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-28T19:51:18Z 2022-04-28T19:51:18Z 2022-08-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.cam.2022.114168 Journal of Computational and Applied Mathematics, v. 410. 0377-0427 http://hdl.handle.net/11449/223536 10.1016/j.cam.2022.114168 2-s2.0-85125450285 |
url |
http://dx.doi.org/10.1016/j.cam.2022.114168 http://hdl.handle.net/11449/223536 |
identifier_str_mv |
Journal of Computational and Applied Mathematics, v. 410. 0377-0427 10.1016/j.cam.2022.114168 2-s2.0-85125450285 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Computational and Applied Mathematics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128295383859200 |