A modified least squares method: Approximations on the unit circle and on (−1,1)

Detalhes bibliográficos
Autor(a) principal: Silva Ribeiro, Luana L. [UNESP]
Data de Publicação: 2022
Outros Autores: Sri Ranga, A. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.cam.2022.114168
http://hdl.handle.net/11449/223536
Resumo: The main objective in the present manuscript is to consider approximations of functions defined on the unit circle by Laurent polynomials derived from certain combinations of kernel polynomials of orthogonal polynomials on the unit circle. The method that we employ is based on a modification of the least squares method. The modification adopted here simplifies considerably the determinations of the coefficients in the combinations. Numerical examples show that this modified technique still leads to very good approximations.
id UNSP_a063006d5485c3fbb3006d376969a013
oai_identifier_str oai:repositorio.unesp.br:11449/223536
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A modified least squares method: Approximations on the unit circle and on (−1,1)Kernel polynomials on the unit circleLeast squares approximationOrthogonal polynomials on the unit circleThe main objective in the present manuscript is to consider approximations of functions defined on the unit circle by Laurent polynomials derived from certain combinations of kernel polynomials of orthogonal polynomials on the unit circle. The method that we employ is based on a modification of the least squares method. The modification adopted here simplifies considerably the determinations of the coefficients in the combinations. Numerical examples show that this modified technique still leads to very good approximations.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UNESP - Universidade Estadual Paulista Departamento de Matamática IBILCE/UNESP, Rua Cristóvão Colombo 2265UNESP - Universidade Estadual Paulista Departamento de Matamática IBILCE/UNESP, Rua Cristóvão Colombo 2265CAPES: 2016/09906-0FAPESP: 2017/04358-8CAPES: 2020/14244-2CNPq: 304087/2018-1Universidade Estadual Paulista (UNESP)Silva Ribeiro, Luana L. [UNESP]Sri Ranga, A. [UNESP]2022-04-28T19:51:18Z2022-04-28T19:51:18Z2022-08-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.cam.2022.114168Journal of Computational and Applied Mathematics, v. 410.0377-0427http://hdl.handle.net/11449/22353610.1016/j.cam.2022.1141682-s2.0-85125450285Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Computational and Applied Mathematicsinfo:eu-repo/semantics/openAccess2022-04-28T19:51:18Zoai:repositorio.unesp.br:11449/223536Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:57:26.312159Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A modified least squares method: Approximations on the unit circle and on (−1,1)
title A modified least squares method: Approximations on the unit circle and on (−1,1)
spellingShingle A modified least squares method: Approximations on the unit circle and on (−1,1)
Silva Ribeiro, Luana L. [UNESP]
Kernel polynomials on the unit circle
Least squares approximation
Orthogonal polynomials on the unit circle
title_short A modified least squares method: Approximations on the unit circle and on (−1,1)
title_full A modified least squares method: Approximations on the unit circle and on (−1,1)
title_fullStr A modified least squares method: Approximations on the unit circle and on (−1,1)
title_full_unstemmed A modified least squares method: Approximations on the unit circle and on (−1,1)
title_sort A modified least squares method: Approximations on the unit circle and on (−1,1)
author Silva Ribeiro, Luana L. [UNESP]
author_facet Silva Ribeiro, Luana L. [UNESP]
Sri Ranga, A. [UNESP]
author_role author
author2 Sri Ranga, A. [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Silva Ribeiro, Luana L. [UNESP]
Sri Ranga, A. [UNESP]
dc.subject.por.fl_str_mv Kernel polynomials on the unit circle
Least squares approximation
Orthogonal polynomials on the unit circle
topic Kernel polynomials on the unit circle
Least squares approximation
Orthogonal polynomials on the unit circle
description The main objective in the present manuscript is to consider approximations of functions defined on the unit circle by Laurent polynomials derived from certain combinations of kernel polynomials of orthogonal polynomials on the unit circle. The method that we employ is based on a modification of the least squares method. The modification adopted here simplifies considerably the determinations of the coefficients in the combinations. Numerical examples show that this modified technique still leads to very good approximations.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-28T19:51:18Z
2022-04-28T19:51:18Z
2022-08-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.cam.2022.114168
Journal of Computational and Applied Mathematics, v. 410.
0377-0427
http://hdl.handle.net/11449/223536
10.1016/j.cam.2022.114168
2-s2.0-85125450285
url http://dx.doi.org/10.1016/j.cam.2022.114168
http://hdl.handle.net/11449/223536
identifier_str_mv Journal of Computational and Applied Mathematics, v. 410.
0377-0427
10.1016/j.cam.2022.114168
2-s2.0-85125450285
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Computational and Applied Mathematics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128295383859200