Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s00025-016-0631-y http://hdl.handle.net/11449/173948 |
Resumo: | We refer to a pair of non trivial probability measures (μ0, μ1) supported on the unit circle as a coherent pair of measures of the second kind on the unit circle if the corresponding sequences of monic orthogonal polynomials {Φn(μ0;z)}n≥0 and {Φn(μ1;z)}n≥0 satisfy 1nΦn′(μ0;z)=Φn-1(μ1;z)-χnΦn-2(μ1;z), n≥ 2. It turns out that there are more interesting examples of pairs of measures on the unit circle with this latter coherency property than in the case of the standard coherence. The main objective in this contribution is to determine such pairs of measures. The polynomials orthogonal with respect to the Sobolev inner products associated with coherent pairs of measures of the second kind are also studied. |
id |
UNSP_a2112411071b2aa7188a42d5fa1d4fec |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/173948 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kindcoherent pairs of measures of the second kindOrthogonal polynomials on the unit circleSobolev orthogonal polynomials on the unit circleWe refer to a pair of non trivial probability measures (μ0, μ1) supported on the unit circle as a coherent pair of measures of the second kind on the unit circle if the corresponding sequences of monic orthogonal polynomials {Φn(μ0;z)}n≥0 and {Φn(μ1;z)}n≥0 satisfy 1nΦn′(μ0;z)=Φn-1(μ1;z)-χnΦn-2(μ1;z), n≥ 2. It turns out that there are more interesting examples of pairs of measures on the unit circle with this latter coherency property than in the case of the standard coherence. The main objective in this contribution is to determine such pairs of measures. The polynomials orthogonal with respect to the Sobolev inner products associated with coherent pairs of measures of the second kind are also studied.Ministerio de Economía y CompetitividadInstituto de Ciencias Matemáticas (ICMAT) and Departamento de Matemáticas Universidad Carlos III de MadridDepartamento de Matemática Aplicada IBILCE UNESP-Universidade Estadual PaulistaDepartamento de Matemática Aplicada IBILCE UNESP-Universidade Estadual PaulistaMinisterio de Economía y Competitividad: MTM2012-C03-01Universidad Carlos III de MadridUniversidade Estadual Paulista (Unesp)Marcellán, F.Sri Ranga, A. [UNESP]2018-12-11T17:08:27Z2018-12-11T17:08:27Z2017-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1127-1149application/pdfhttp://dx.doi.org/10.1007/s00025-016-0631-yResults in Mathematics, v. 71, n. 3-4, p. 1127-1149, 2017.1420-90121422-6383http://hdl.handle.net/11449/17394810.1007/s00025-016-0631-y2-s2.0-850064568012-s2.0-85006456801.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengResults in Mathematics0,582info:eu-repo/semantics/openAccess2023-11-15T06:14:22Zoai:repositorio.unesp.br:11449/173948Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:45:23.226382Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind |
title |
Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind |
spellingShingle |
Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind Marcellán, F. coherent pairs of measures of the second kind Orthogonal polynomials on the unit circle Sobolev orthogonal polynomials on the unit circle |
title_short |
Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind |
title_full |
Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind |
title_fullStr |
Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind |
title_full_unstemmed |
Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind |
title_sort |
Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind |
author |
Marcellán, F. |
author_facet |
Marcellán, F. Sri Ranga, A. [UNESP] |
author_role |
author |
author2 |
Sri Ranga, A. [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidad Carlos III de Madrid Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Marcellán, F. Sri Ranga, A. [UNESP] |
dc.subject.por.fl_str_mv |
coherent pairs of measures of the second kind Orthogonal polynomials on the unit circle Sobolev orthogonal polynomials on the unit circle |
topic |
coherent pairs of measures of the second kind Orthogonal polynomials on the unit circle Sobolev orthogonal polynomials on the unit circle |
description |
We refer to a pair of non trivial probability measures (μ0, μ1) supported on the unit circle as a coherent pair of measures of the second kind on the unit circle if the corresponding sequences of monic orthogonal polynomials {Φn(μ0;z)}n≥0 and {Φn(μ1;z)}n≥0 satisfy 1nΦn′(μ0;z)=Φn-1(μ1;z)-χnΦn-2(μ1;z), n≥ 2. It turns out that there are more interesting examples of pairs of measures on the unit circle with this latter coherency property than in the case of the standard coherence. The main objective in this contribution is to determine such pairs of measures. The polynomials orthogonal with respect to the Sobolev inner products associated with coherent pairs of measures of the second kind are also studied. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-01 2018-12-11T17:08:27Z 2018-12-11T17:08:27Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s00025-016-0631-y Results in Mathematics, v. 71, n. 3-4, p. 1127-1149, 2017. 1420-9012 1422-6383 http://hdl.handle.net/11449/173948 10.1007/s00025-016-0631-y 2-s2.0-85006456801 2-s2.0-85006456801.pdf |
url |
http://dx.doi.org/10.1007/s00025-016-0631-y http://hdl.handle.net/11449/173948 |
identifier_str_mv |
Results in Mathematics, v. 71, n. 3-4, p. 1127-1149, 2017. 1420-9012 1422-6383 10.1007/s00025-016-0631-y 2-s2.0-85006456801 2-s2.0-85006456801.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Results in Mathematics 0,582 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1127-1149 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128853988605952 |